NASA TECHNICAL NOTE

NASA TN D-7538

(NASA-TN-D-7538) TRIANGULATION OF NULTISTATION CAMERA DATA TO LOCATE A CURVED LINE IN SPACE (NASA) 42 p HC \$3.25 N74-22478

Unclas H1/30 38084

TRIANGULATION OF
MULTISTATION CAMERA DATA
TO LOCATE A CURVED LINE IN SPACE

by Clifford L. Fricke Langley Research Center Hampton, Va. 23665

1. Report No.	2. Government Accession No.		3. Recipient's Catalog No.					
NASA TN D-7538 4. Title and Subtitle								
			5. Report Date					
TRIANGULATION OF MULTIS LOCATE A CURVED LINE IN		A TO	6. Performing Organia May 1974	zation Code				
7. Author(s)			8. Performing Organiz	ation Report No.				
Clifford L. Fricke		- 1	L-9268					
Cimord L. Fricke			10. Work Unit No.	·				
Performing Organization Name and Address	- ·		879-11-36-	-01				
NASA Langley Research Cente	r	ŀ	11. Contract or Grant					
Hampton, Va. 23665								
			13. Type of Report ar	nd Period Covered				
12. Sponsoring Agency Name and Address			Technical					
National Aeronautics and Space	e Administration	ŀ	14. Sponsoring Agency					
Washington, D.C. 20546			11. opensoring rightly	COLL				
15. Supplementary Notes								
, ,								
16. Abstract								
A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes.								
17. Key Words (Suggested by Author(s))	18. Distri	bution Statement						
Triangulation, multistation	IIn	classified -	- Unlimited					
Ion cloud Stereotriangulation			J111111410U					
Photogrammetry								
Ballistic camera Multistation triangulation			STAI	R Category 30				
19. Security Classif. (of this report)	20. Security Classif, (of this page)	- 	21. No. of Pages	22. Price*				
Unclassified	Unclassified	•	42	22, The				

TRIANGULATION OF MULTISTATION CAMERA DATA TO LOCATE A CURVED LINE IN SPACE

By Clifford L. Fricke Langley Research Center

SUMMARY

A method is described for finding the location of a curved line in space from local azimuth as a function of elevation data obtained at several observation sites. A least-squares criterion is used to insure the best fit to the data. The method is applicable to the triangulation of an object having no identifiable structural features, provided its width is very small compared with its length so as to approximate a line in space. The method was implemented with a digital computer program and was successfully applied to data obtained from photographs of a barium ion cloud which traced out the Earth's magnetic field line at very high altitudes.

INTRODUCTION

A unique and powerful tool in magnetospheric studies involves the deposition of barium vapor at a point in the magnetosphere through the use of chemicals or explosives carried aloft by rockets. The barium atoms are rapidly ionized by sunlight and thus form a barium ion cloud which extends along the magnetic field line and becomes "frozen" to it. The barium ion cloud, on account of its resonant scattering of sunlight, is visible to ground sites when viewed against the night sky and hence serves to delineate the magnetic field line over a considerable arc length. This condition permits a determination of magnetic field line orientation and shape. From the motion of the cloud one may obtain the convective motion of magnetospheric plasma and hence the electric fields which drive such motions.

The accuracy of locating an object in the distant magnetosphere by triangulation methods is extremely limited by the relatively short baselines available. In the case of the barium ion cloud (ref. 1), even though the observation sites were widely dispersed on the Earth, the cloud altitude was about five times the baseline distance. Hence, it was necessary to use every means possible to improve the accuracy such as calibration for distortion in the cameras, orientation of cameras using stars in the photographs, and the use of more than two observation sites.

Existing triangulation methods were limited in one respect or another: methods using several observation sites triangulated only on points (refs. 2 and 3) and methods which triangulated on lines could use only two observation sites (refs. 4 to 6). Table I shows a comparison of the various methods.

In view of these limitations, it was desired to develop a triangulation method which allows for a cloud that is curved in space, extends over a large arc, and is to be photographed at several observation sites. The difficulty in obtaining a solution by triangulating on an extended object from several sites lies in the fact that the intersection of the several surfaces defined by the necessarily inaccurate data from several sites does not determine a unique line in space. Thus, some criterion is needed to determine the most probable solution when all the data are taken into account.

Methods already exist (refs. 7 to 9) for precise conversion of images on photographs to pointing directions from each site, such as azimuth as a function of elevation. This note describes a method and a computer program that find the most probable line solution from input data on azimuth as a function of elevation from several observation sites.

FORTRAN VARIABLES AND SYMBOLS

FORTRAN variables are the same as algebraic symbols, except that they are underlined when used in equations in the text.

A equatorial radius, 6378.166 km; in subroutine SUMRES, angle in radians used to weight residuals

AZ(L,N) azimuth angle from site L, data point N

a,b,c coefficients in quadratic equation

B polar radius, 6356.784 km

BC(I,L,N) Ith coefficient in least-squares fit for site L, data point N

CLAT geocentric latitude

CR geocentric radius

C1,C2,C3 coefficients in least-squares fit to data for azimuth as a function of elevation (az-el)

D residual (minimum angle between point P and az-el curve) D(L) residual from site L DA increment given to PLON DC discriminant of cubic equation DDA interpolation correction given to PLON to give minimum point DEG degrees per radian DIST(L) angle between point P and end data point on az-el curve, site L DNA altitude increment DR increment given to PLAT DX,DY,DZ axes in topocentric coordinate system; on horizontal plane in easterly direction, on horizontal plane in northerly direction, and in vertical direction perpendicular to horizontal plane, respectively \mathbf{E} root-mean-square residual; in subroutine GGRGCN, ratio A²/B² E(N) minimum root-mean-square residual with respect to both latitude and longitude; thus, the solution at point N is defined EL(L,N) elevation angle from site L, data point N $\mathbf{E}\mathbf{M}$ minimum root-mean-square residual (with variable longitude) for a given latitude in subroutine LONMIN, root-mean-square residual for three consecutive E1,E2,E3 longitudes

flattening factor, 1/298.3; in subroutine SUMRES, weighting factor depending

 \mathbf{F}

GLAT

on DIST(L)

geographic latitude

GLON geographic or geocentric longitude

H geographic altitude, km

HI altitude of first estimated trial point

IN number of iterations in subroutine MINISOL (usually 3)

IS number of sites using data points on the end of az-el curve

L observation site number

LP index to designate line (LP=1) or point (LP=2) solution

N in program LARC, data point number, or solution point number; in subroutine

RESDUE, data point nearest the trial point (PAZ, PEL)

NBL number of az-el data points (used for NB(L))

NB(L) number of az-el data points from site L

NC(L,N) az-el data point number of site L used to obtain solution point N

ND index used to increment solution point number N by ± 1

NO number of az-el data points used in least-squares fit

NP(L) data point number nearest solution point from site L

NS number of observation sites

NV particular data point within the set NO

N1 smallest solution point number

N2 largest solution point number

P,Q,R coefficients in cubic equation

PAZ azimuth of point P

PEL elevation of point P

PI π

PLAT geocentric latitude of point P

PLATG geographic latitude of point P

PLATI geographic latitude of first estimated trial point P

PLON longitude of point P

PLONI longitude of first estimated trial point P

PR geocentric radius of point P

R radius of revolution of spheroid

RA range from observation site S to point P

RAD radians per degree

RP projection of geocentric radius on equatorial plane

SH(L) altitude of observation site L

SLAT(L) geographic latitude of observation site L

SLON(L) longitude of observation site L

SR radius from Z-axis of observation site

TALT(N) altitude of solution point N

TLAT(N) geographic latitude of solution point N

TLON(L) longitude of solution point N

- WT(L) weighting factor for observation site L
- X,Y,Z geocentric coordinate axes; in equatorial plane in direction of Greenwich, in equatorial plane directed to make a right-handed system, and in direction of north pole perpendicular to equatorial plane, respectively
- XA,YA,ZA geocentric components of line-of-sight vector from observation site S to trial point P
- XD angle between point P and data point on az-el curve
- XP,YP,ZP geocentric components of trial point P
- XS,YS,ZS geocentric components of observation site S
- X1,Y1 independent and dependent variables, respectively, in least-squares curve fit to az-el data
- ϕ, θ, ψ Eulerian rotation angles

GENERAL DISCUSSION OF MULTISTATION TRIANGULATION

Case of a Point Object

Consider first the simple case of a point object in space observed from several sites. (Fig. 1 illustrates the case of three sites.) In general, the measured lines of sight will not intersect because of errors in measuring the pointing direction from each site. One would expect the probable error in pointing to be the same at each site, where the error in pointing is defined as the angle between the measured direction and the actual direction of the object. In order to find the most probable solution, consider a trial solution point P in space and define the residual from a site as the angle between the measured direction from that site and the direction of the trial solution (D(1), D(2), and D(3) in fig. 1). The most probable solution, if it is assumed that pointing errors at each site are random, then, would be the one which minimizes the sum of the squares of the residuals $D(1)^2 + D(2)^2 + D(3)^2$. (See ref. 10, pp. 107-109.)

Case of a Curved Object

Next, consider the problem of locating a curved line object in space which is illustrated in figure 2 for three observation sites. The curve for the azimuth as a function of elevation from a single site defines a conical surface in space. With data from only two

sites, intersection of the surfaces is unique, but with three or more sites, the intersections are no longer unique.

Generally, there is no distinguishable feature on any part of the cloud. The end points cannot be determined since they fade out gradually, and hence the location of the end depends on the exposure of the photograph, and brightness of the sky background. The center of the cloud length may sometimes be brighter, but it cannot be located accurately. Hence, if the curvature of the azimuth as a function of elevation is small, only errors perpendicular to the curve are important, since any error along the curve merely slides the curve on itself. It is reasonable to expect, then, that the probable error perpendicular to the surface defined by the az-el curve is the same for each site. Thus the residual of a trial point will be defined as the angle between the line of sight of that point and its projection on the conical surface defined by the curve for the variation of azimuth with elevation from the specified site. This angle, of course, represents the minimum angle between the line of sight to the trial point and any line of sight on the conical surface (D(1) in fig. 2). If the trial point is to lie on the most probable solution curve, then the sum of the squares of the residuals from all sites must be minimized. (This procedure is equivalent to minimization of the root-mean-square (rms) value of the residuals.)

It has been assumed throughout that the object is a line in space. If the object has lateral dimensions, then it must possess a center line which is identifiable as such from every observation site for the method to be applicable.

Minimization of Root-Mean-Square Residuals

Even though the desired solution is a curved line in space, the method described in this paper successively solves for specific points on that line. For convenience, the independent variable is altitude (which will be converted to geocentric radius) so that each point will be at a selected altitude; if the cloud had extended beyond the magnetic equator, then the independent variable should be latitude in order to be single-valued.

Thus, consider a trial solution point P which will remain at a fixed geocentric radius (which is essentially equivalent to a fixed altitude); the problem is to find the latitude and longitude which minimize the root-mean-square residuals. First, assume a trial latitude A and vary the longitude along A until a minimum root-mean-square residual EMA is found, as indicated in figure 3. Next, increment the latitude to some new value B, and again vary longitude until a minimum as indicated by EMB is obtained. Thus EM, the minimum root-mean-square residual with variable longitude can be obtained as a function of latitude, and one can readily find the latitude that minimizes EM; this latitude and its corresponding minimizing longitude is the point at the selected altitude that lies on the

most probable solution curve. A description of the computer programs which use this method to find the most probable solution curve is given in the following sections.

COMPUTER PROGRAMS

The main program, called LARC (listing and flow chart are given in appendix A), in addition to reading cards, processing data, and printing results, has the main function of iterating the altitude at desired preselected intervals. Program LARC calls subroutine MINISOL which first calls subroutine LONMIN in order to minimize the root-mean-square residuals with respect to longitude, and then iterates the latitude in order to find the minimizing latitude.

The subroutines will be discussed first and are listed in appendix B. FORTRAN variables in the computer programs will have the same name in the text, but when used in algebraic equations, they will be underlined.

Appendix C describes the geographic, geocentric, and topocentric coordinate systems. The conversion from geographic to geocentric (subroutine GGRGCN), as well as the formulas for the inverse conversion (subroutine GCNGGR), are also given in appendix C.

Conversion From Geocentric to Topocentric Coordinates

Subroutine PAZEL converts a trial solution at a point P (given in geocentric coordinates, PLAT, PLON, and PR) to local azimuth and elevation from an observation site S with geographic coordinates SLAT, SLON, and SH. Figure 4 applies.

The first part of the program converts the observation site to geocentric coordinates XS, YS, and ZS by using the same method as in subroutine GGRGCN.

The geocentric coordinates of the trial point are converted to Cartesian coordinates XP, YP, and ZP. The geocentric coordinates of the line-of-sight vector from observation site S to trial point P are

$$\begin{bmatrix} \underline{X}\underline{A} \\ \underline{Y}\underline{A} \\ \underline{Z}\underline{A} \end{bmatrix} = \begin{bmatrix} \underline{X}\underline{P} - \underline{X}\underline{S} \\ \underline{Y}\underline{P} - \underline{Y}\underline{S} \\ \underline{Z}\underline{P} - \underline{Z}\underline{S} \end{bmatrix}$$

The geocentric axes X, Y, and Z can be brought into coincidence with axes DX, DY, and DZ by rotation through the Eulerian angles

$$\phi = \underline{\text{SLON}} + 90^{\text{O}}$$

$$\theta \approx 90^{\text{O}} - \underline{\text{SLAT}}$$

$$\psi = 0$$

Thus, from use of formulas derived in reference 11,

Then the azimuth angle is

$$\underline{AZ} = \tan^{-1} \frac{\underline{DX}}{\underline{DY}}$$

and the elevation angle is

$$\underline{EL} = \tan^{-1} \frac{\underline{DZ}}{\left(\underline{DX}^2 + \underline{DY}^2\right)^{1/2}}$$

Sorting of az-el Data

Since certain subroutines require the az-el data to be ordered from one end of the curve to the other, it is necessary to insure that they are. Subroutine SORT(L) sorts the az-el data from each site L, for convenience, in such a way that the first point from each site corresponds to the high altitude end of the cloud; this is accomplished by setting the variable

$$\underline{xs} = -(-1)^{L}$$

This particular equation, of course, was made to hold for a particular orientation of the cloud and a particular set of observation sites.

Since elevation was the independent variable and single-valued, the ordering was done in terms of that variable only.

Computation of Second-Order Least-Squares Fit to

Successive az-el Curve Segments

The accurate computation of the residual is an important part of the triangulation method. The original az-el data, in a striving for accuracy, usually consists of many arbitrarily located closely spaced points along the curve, so that a least-squares curve fit can be used to reduce the random errors involved in measuring the cloud center line. A second-order fit is sufficient for defining a segment of the curve since only a short interval is needed in the vicinity of the trial point P. The number of points used in the curve fit is NO and depends on the number and quality of data points.

Subroutine BCOEF(L,N) computes the three coefficients BC(3,L,N) for a second-order least-squares curve fit from a given observation site numbered L, with the data point N as an origin. The NO data points used in the curve fit are centered about the data point N (except near the ends of the curve) and hence NO is an odd number. It is to be noted that the coefficients are calculated for every data point, of which there are NB(L).

An exact coordinate conversion to the point N as origin would involve the Eulerian angles AZ and EL, but since the angular deviations from this origin will always be small, the two orthogonal angular components are

$$X1 = \Delta EL$$

and

$$\underline{Y1} = \Delta \underline{AZ} \cos (\underline{EL})$$

as illustrated in figure 5. The independent variable in the quadratic formula for the particular data point NV within the set NO is

$$\underline{X1} = \underline{EL}(\underline{L}, \underline{NV}) - \underline{EL}(\underline{L}, \underline{N})$$

The dependent variable is

$$\underline{\mathbf{Y1}} = (\underline{\mathbf{AZ}}(\underline{\mathbf{L}},\underline{\mathbf{NV}}) - \underline{\mathbf{AZ}}(\underline{\mathbf{L}},\underline{\mathbf{N}}))\cos\frac{\underline{\mathbf{EL}}(\underline{\mathbf{L}},\underline{\mathbf{N}}) + \underline{\mathbf{EL}}(\underline{\mathbf{L}},\underline{\mathbf{N}})}{2}$$

Computation of Residuals

Subroutine RESDUE(PAZ,PEL,L,D,XD) finds the residual D of a trial solution point when the azimuth PAZ and the elevation PEL of the line of sight from site L to the trial point P are given.

The first part of the subroutine finds the data point N which is nearest the trial point PAZ, PEL, starting with the point from the previous calculation which is stored in NP(L) as a first try.

The next part of the subroutine computes the residual. Point P has the coordinates (with data point N as the origin)

$$\underline{\mathbf{X1}} = \underline{\mathbf{PEL}} - \underline{\mathbf{EL}}(\underline{\mathbf{L}},\underline{\mathbf{N}})$$

$$\underline{Y1} = (\underline{PAZ} - \underline{AZ}(\underline{L},\underline{N}))\cos \frac{\underline{PEL} + \underline{EL}(\underline{L},\underline{N})}{2}$$

The second-order curve fit to the data points is

$$\underline{\mathbf{Y}} = \underline{\mathbf{C}}\mathbf{1} + \underline{\mathbf{C}}\mathbf{2} \ \underline{\mathbf{X}} + \underline{\mathbf{C}}\mathbf{3} \ \underline{\mathbf{X}}^2$$

where

$$C1 = BC(1,L,N), \dots$$

The distance between point P and the curve is given by

$$D^2 = (X1 - X)^2 + (Y1 - Y)^2$$

To find the minimum distance, differentiate D^2 and set the result equal to zero:

$$(\underline{X1} - \underline{X}) + (\underline{Y1} - \underline{Y}) \frac{d\underline{Y}}{dX} = 0$$

Substitution for \underline{Y} and $d\underline{Y}/d\underline{X}$ from the preceding equations gives the standard form for a cubic

$$X^3 + P X^2 + Q X + R = 0$$

where

$$\underline{P} = \frac{1.5\underline{C2}}{\underline{C3}}$$

$$Q = \frac{1 + C2^2 + 2C3(C1 - Y1)}{2C3^2}$$

$$\underline{R} = \frac{C2(C1 - Y1) - X1}{2C3^2}$$

The solution of this cubic equation is standard, but the type of solution depends on the value of the discriminant DC (as shown in the listing of subroutine RESDUE). If DC is greater than zero, there is one real root which is computed. If DC is less than zero, there are three real roots. The residual is thus

$$\underline{\mathbf{D}} = \left((\underline{\mathbf{Y}} - \underline{\mathbf{Y}}\underline{\mathbf{1}})^2 + (\underline{\mathbf{X}} - \underline{\mathbf{X}}\underline{\mathbf{1}})^2 \right)^{1/2}$$

where X is a real solution of the cubic, and Y is the corresponding value from the equation for Y given previously. The subroutine finds the real root which gives the smallest D.

For the case of a point solution, the subroutine is specialized with LP = 2, which causes the subroutine RESDUE to go to statement 10, and computes

$$\underline{\underline{Y}} = (\underline{\underline{PAZ}} - \underline{\underline{AZ}}(\underline{\underline{L}},\underline{\underline{K}}))\cos\left(\frac{\underline{\underline{PEL}} + \underline{\underline{EL}}(\underline{L},\underline{\underline{K}})}{2}\right)$$

$$\underline{X} = \underline{PEL} - \underline{EL}(\underline{L},\underline{K})$$

$$\underline{\mathbf{D}} = \left(\underline{\mathbf{X}}^2 + \underline{\mathbf{Y}}^2\right)^{1/2}$$

where AZ(L,K), EL(L,K) is the data point from site L.

Calculation of Root Mean Square of Residuals

Subroutine SUMRES calls subroutine PAZEL to calculate azimuth and elevation for a trial point P, and then calls subroutine RESDUE to calculate the residual from each observation site. Then it computes the root-mean-square value of the residuals.

It usually happens that the cloud viewed at one site does not extend as far as from another site. Thus, it is desirable to extrapolate data from such sites, but with reduced weighting. Subroutine SUMRES reduces the weighting by the factor

$$\frac{\underline{\underline{A}}}{A + DIST(L)}$$

where DIST(L) is either zero or equal to DX, the distance between the trial az-el and the nearest data point NP(L) on the az-el curve, and $\underline{A} = 0.5/57.3$ radians, a somewhat arbitrary fixed angle of 0.5° . Finally, DIST(L) is set equal to zero for the two sites having the smallest value of DIST(L).

Variation of Longitude To Obtain Minimum Residuals

Subroutine LONMIN(PLAT,PLON,PR,DR,EM) finds the minimum value of the root-mean-square residuals EM as the longitude PLON is varied while keeping the geocentric latitude PLAT and radius PR constant.

The procedure is to increment PLON by DA (which is initially equal to DR), changing directions when necessary to go through a minimum, calling SUMRES to calculate the root-mean-square residual. Consecutive root-mean-square values are labeled (and relabeled as PLON is incremented) E1, E2, and E3 so that when E2 is the smallest, the PLON which gives minimum can be approximated by using the following analysis.

Assume that the root-mean-square residual E is a second-order function of the longitude DA:

$$E = a + bDA + cDA^2$$

For minimum E, the longitude is

$$\underline{DDA} = -\frac{b}{2c}$$

From the three values E1, E2, and E3, and the corresponding longitudes -DA, 0, and DA (using the longitude of the middle point as origin) one can obtain by substitution into E

$$b = -\frac{E1 - E3}{2DA}$$

$$c = \frac{E3 + E1 - 2E2}{2DA^2}$$

from which the longitude (relative to point 2) for minimum root-mean-square residuals is

$$\underline{DDA} = \frac{(E1 - E3)DA}{2(E1 - 2E2 + E3)}$$

The increment DA is then decreased by a factor of 10, and the procedure is repeated one time.

Minimization With Latitude

Subroutine MINISOL(PLAT, PLON, PR, DR, IN, E) starts with the trial point PLAT, PLON, PR and while keeping PR fixed, varies PLAT. For each PLAT, LONMIN is called to find the minimum root-mean-square residuals with respect to PLON.

When three consecutive minimum root-mean-square residuals E1, E2, and E3 are found so that E2 is the least, then an approximation is made (same method as in LONMIN, except independent variable is now latitude DR) to determine the PLAT for minimum residual. The increment DR is then decreased and the procedure is repeated until IN iterations are made (typically three, with consecutive DR values of 0.1°, 0.01°, and 0.001°). Upon returning to LARC, the new values of PLAT and PLON give the solution at the particular PR.

Program LARC

The main program is program LARC, which first reads in the observation site data cards in geographic coordinates. For each pass through the program, a triangulation is made at one instant of time by using az-el data from simultaneous photographs at each site; thus a solution curve of latitude and longitude as functions of altitude is obtained.

After the time is read in, azimuth and elevation data cards from each site are read and stored in AZ(L,N) and EL(L,N); L refers to the site number and N to the data point number. Then subroutine SORT(L) sorts the data into either increasing or decreasing elevation angles.

The BC(I,L,N) coefficients are then calculated for each site L and for every data point N by calling the BCOEF subroutine.

The first estimated solution is chosen near the center of the cloud; since the first estimate may be far from the solution, it is better to start in a region where the data have the best quality. An integral 100-km value of altitude is used and is read from a data card. The first solution point is labeled N = 50 with altitude increments DNA = 100 km corresponding to increments of 1 in N, where N now refers to a solution point and not a data point. Subsequent trial solutions use the previous solution point.

One of the main difficulties in the solution occurs near the ends of the cloud. Because of differences in exposure, range of cloud, orientation, and visual conditions, the cloud visibility may extend farther at one site than at another. Subroutine SUMRES will automatically extrapolate curves when necessary, but will give less weight to the extrapolated parts. Hence a procedure is needed to stop the calculation when the solution curve is going beyond the data from every observation site. This procedure is accomplished with the index IS which is equal to the number of sites using a data point on the end of the curve in subroutine RESDUE. When all sites except one are extrapolated beyond the end of the az-el curve, then the solution is stopped, and started again at the middle ($N \approx 50$) with the altitude now incremented downward.

Solutions are stored in TLAT(N), TLON(N), and TALT(N). For each solution point, the point on the az-el curve for each site is stored in NC(L,N) and the root-mean-square residuals are stored in E(N) in units of degrees. Finally, the solution is printed out.

ILLUSTRATIVE CASE

As an example, actual data from the barium ion release of September 21, 1971, will be given. Three observation sites were used: (1) Mt. Hopkins, Arizona; (2) Cerro Morado, Chile; and (3) Wallops Island, Virginia. (Coordinates are given at beginning of table II.) Table II shows a printout of the az-el input data for the time 3 hrs 18 min 10 sec UT (13.307 min after release). There were 36 data points from site 1, 75 from site 2, and 28 from site 3. The number of points NO used in the least-squares fit was 25, which represents about 1.70 of arc when viewed from site 2, and 2.70 when viewed from the other two sites.

Table III shows the final solution. Total central processor time for the job on the Control Data Corporation model 6600 computer was 19.5 seconds. A test was made to see how many iterations were made in the solution. For this case, SUMRES was called a total of 2922 times, or on the average, 104 times for each solution point at each altitude. The root-mean-square residuals were of the order of 0.0045°.

CONCLUDING REMARKS

A computer program for the triangulation of azimuth-elevation (az-el) data from several observation sites has been presented. Because of the relatively short baseline used and the high accuracy required, it was necessary to make a special effort to reduce the effects of random errors. This reduction was accomplished by using several observation sites and many data points from each site.

An optimal solution was achieved by requiring the minimization of the root-mean-square residual of all the sites and by using a least-squares curve fit to the az-el data. An illustrative example using three observation sites was given for an actual barium cloud. The root-mean-square residuals were of the order of 0.005°.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., February 6, 1974.

APPENDIX A

PROGRAM LARC

Program Listing

The listing and flow chart for program LARC are presented in this appendix.

	PROGRAM LARC(INPUT.GUTPUT)
	TROUBLE THE O'S DOTTO!
****	THIS PROGRAM SOLVES THE PROBLEM OF LOCATING A CURVED LINE IN SPACE GIVEN
*	SIMULTANEOUS AZ-EL DATA FROM SEVERAL OBSERVATION SITES. THE METHOD FINDS
*	SUCCESSIVE LAT AND LON POINTS AT SELECTED ALTITUDE INCREMENTS. EACH POINT
*	IS VARIED IN BOTH LONGITUDE AND LATITUDE IN ORDER TO MINIMIZE THE RMS
*	FESIDUALS FROM ALL THE OBS SITES.
*	THE RESIDUALS ARE COMPUTED USING A 2ND DRDER LEAST SQUARES CURVE FIT TO
*	
	THE AZ-EL DATA IN THE VICINITY OF EACH TRIAL POINT.
	THE PROGRAM FINDS A COMPLETE CURVED LINE SOLUTION FOR SEVERAL EPOCHS
	OR TIMES
. C	
	MIMENSION TLAT(99), TLON(99), TALT(99)
-	DIMENSION E(99), NC(5, 99)
	COMMON/SITES/NS, SLAT(5), SLON(5), SH(5), WT(5), DEG
,	COMMON/LINE/AZ(5,190), EL(5,1901, BC(3,5,190), NP(5), NB(5), LP
	F=6371.2
÷	SET IN ALTITUDE INCREMENT
	ONA=100.
	WT(1)=WT(2)=WT(3)=WT(4)=WT(5)=1.
≉ .	FEAD IN NUMBER OF OBS SITES
y	FEAD 10, NS
10	FORMAT(15)
÷	PRINT OUT NO OF OBS SITES
	PRINT 101,NS
191	FORMAT(*1*12* STATION TRIANGULATION*/)
***	READ IN GEOGRAPHIC COORDINATES (IN DEGREES AND KM) FOR EACH SITE AND
*	CONVERT TO RADIANS
-	1)(11 L=1,NS
	FEAD 12, SLAT(L), SLON(L), SH(L)
12	FOPMAT(2F20-10,F13-21
••	PRINT 112, SLAT(L), SLON(L), SH(L)
112	FORMAT(* SLAT=*F9.4* SLON=*F9.4* SALT=*F8.4)
•	SLAT(L)=SLAT(L)*RAD \$ SLON(L)=SLON(L)*RAD
11	(PNT I NUE
****	*THIS IS BEGINNING OF SOLUTION FOR EACH EPOCH OR TIME.
*	KEAD IN TIME
116	READ 111, IHR, MIN, SEC
111	FURMAT(115,13,F7,1)
2,5	IF TIME CARD IS BLANK, STOP-THE LAST EPOCH HAS BEEN PROCESSED.
	IFCIHROEQ. 01 STOP
*	PRINT TIME
	FRINT 110,1Hk,MIN,SEC
110	FORMAT(#171ME#15# HR*15# MIN#F7.1* SEC#)
‡ 113	INITIALIZE STARTING POINT FOR LATER SEARCH ON AZ-EL CURVE
*	19(1)=NP(2)=NP(3)=NP(4)=NP(5)=3
***	PEAD IN INPUT AZ EL DATA FOR EACH SITE
ች ት ች	00 21 L=1.NS
	00 21 (*1)05

APPENDIX A - Continued

*	SEAD IDENTIFICATION INFORMATION ON DATA CARD, WHICH HAS COLUMN 10 BLANK.
*	IN SAME CARD ALSO READ AZ-FL FOR ONE DATA POINT.
	MED ALSO MENT HERE LOS MAIN LOS MAIN LOS MAIN
	· · · · · · · · · · · · · · · · · · ·
115	FEAD 23, LST, IS1, 152, TIME, AZ1 ,EL1
23	FORMAT (9x,11,410,46,41),22x,2F11.0)
ÞΚ	IF LST (COLUMN 10) IS NOT BLANK, END OF AZ-EL DATA FOR THIS SITE IS
⇒	INDICATED.
	IF(LST.NE.3) 68 TO 22
	$\mathcal{K}=\mathcal{N}_1+1 \qquad \qquad \qquad \mathcal{K}=\mathcal{K}_1+\mathcal{N}_2$
*	STORE AZ-EL DATA AND PRINT AZ, EL, AND IDENTIFICATION INFORMATION
	AZ(L,N)=AZ1 + EL(L,N)=EL1
	PRINT 123, L, N, AZ(L, N), EL(L, N), IS1, IS2, TIME
123	FORMAT (* STA *12* PT *13* AZ=*F°.4* EL=*F9.4,A10,A6,A10)
±:	CONVERT EL TO RADIANS
~	
	LL(L,N)=EL(L,N)*PAD
7:	PUT AZ IM PROPER QUADRANT AND CHVERT TO RADIANS
	IF (AZ(L, 11).GT.180.) AZ(L, N)=AZ(L, N)-360.
	Λ2(L, N)=A2(L, N) *RAD
	GO TO 113
22	CONTINUE
÷.	SORT AZ-EL BATA IN SPOER OF FL
	CALL SURT(L)
21	CONTINUE
	00 13 U=1,MS
	10 13 N=1, NBL
x(¢	COMPUTE CONFERIGIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY
/¢ ☆	COMPUTE COEFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY
	COMPUTE CONFERICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY HATA POINT FOR EACH ORS SITE.
*	COMPUTE CONFERICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR CACH ORS SITE.
* 13	COMPUTE CONFERICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR CACH ORS SITE.
* 13	COMPUTE CONFERICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR CACH ORS SITE. CALL BOTTER(L, f.) OCTE LP=1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP=1
* 1.3 *	COMPUTE CONFERICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR CACH ORS SITE. CALL BOTTEFIL. CALL BOTTEFIL. LP=1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP=1 IN=3 LEAD FIRST ESTIMATED PLAT AND PLOY IN GEOGRAPHIC DEGREES AT A SELECTED.
± 13 *	COMPUTE CONFESCIONS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTEFIL. CALL BOTEFIL. LP=1 IS FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP=1
± 1.3 * * *	COMPUTE CONFESCIONS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA PRIGIT FOR EACH ORS SITE. CALL BOTEFIL. CALL BOTEFIL. LP=1 IS FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP=1 4 IN=3 LEAD FIRST ESTIMATED PLAT AND PLON IN GEOGRAPHIC DEGREES AT A SELECTED ALTITUDE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT.
* 13 * * * * * * *	COMPUTE CONFESCIONS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA PRIGIT FOR CACH ORS SITE. CALL BOTEFIL, (1) COTE LP=1 IS FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP=1 4 IN=3 LEAD FIRST ESTIMATED PLAT AND PLON IN GEOGRAPHIC DEGREES AT A SELECTED ALITHUSE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATE, PLON, HI
± 1.3 * * *	COMPUTE CREEFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR EACH CRS SITE. CALL BOSEF(L,f) OUTE LP=1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP=1 4 IN=3 LEAD FIRST ESTIMATED PLAT AND PLON IN GEOGRAPHIC DEGREES AT A SELECTED ALTITUDE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATG, PLUN, HI FLENAT(SELO.))
13 * * * *	COMPUTE CREEFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR EACH CRS SITE. CALL BOTEFIL, E.) OUTE LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1
* 13 * * * * * * *	COMPUTE CREEFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTEFIL, D. OUTE LPET IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LPET 4 IN THE STAND PLAT AND PLON IN GEOGRAPHIC DEGREES AT A SELECTED ALITHOSE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATG, PLON, HI FLENAT (3F10.)) FRINT 114, PLATG, PLON, HI FORMAT (**DESTINATED TRIAL POINT LATE**F6.3* LONE**F7.3* ALTE**F6
13 * * * *	COMPUTE CREEFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTEFIL, D. OUTE LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN GEOGRAPHIC DEGREES AT A SELECTED 4 LITTUDE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATG, PLON, HI FLENAT (3FLO.)) FRIST 114, PLATG, PLON, HI FORMAT(*DESTINATED TRIAL POINT LAT=*F6.3* LON=*F7.3* ALT=*F6 \$.0)
13 * * * *	COMPUTE CREEFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTEFIL, D. OUTE LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN GEOGRAPHIC DEGREES AT A SELECTED 4 LITTUDE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATG, PLON, HI FLENAT (3FLO.)) FRIST 114, PLATG, PLON, HI FORMAT(*DESTINATED TRIAL POINT LAT=*F6.3* LON=*F7.3* ALT=*F6 \$.0)
13 * * * *	COMPUTE CREEFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTEFIL, D. OUTE LPET IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LPET 4 IN THE STAND PLAT AND PLON IN GEOGRAPHIC DEGREES AT A SELECTED ALITHOSE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATG, PLON, HI FLENAT (3F10.)) FRINT 114, PLATG, PLON, HI FORMAT (**DESTINATED TRIAL POINT LATE**F6.3* LONE**F7.3* ALTE**F6
* 13 * * * * * 131 114 * *	COMPUTE CREFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTTEFL,;; DOTE LP=1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP=1 L
* 13 * * * * * 131 114 * *	COMPUTE CREFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOTTEFL, F.) DOTE LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP = 1 IS FOR A LINE SOLUTION. IN GEOGRAPHIC DEGREES AT A SELECTED 4 LITUDE HI AND PRINT OUT. HI SHOULD BE INTEGRAL MULTIPLES OF ALTITUDE INCREMENT. FEAD 131, PLATG, PLON, HI FURNATION OF THAT FIRST SOLUTION POINT IS N=50 AND ALTITUDE WILL INCREMENT. SOLUTION POINT IS N=50 AND ALTITUDE WILL INCREASE. N=40
* 13 * * * * * 131 114 * *	COMPUTE CREFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY NATA POINT FOR EACH ORS SITE. CALL BOTTEFIL, (1) NOTE LP = 1 IS FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP = 1
13 * * 131 114 *	COMPUTE CORFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOCFF(L,E) COLD LP=1 IS FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP=1 L
** 13 * * 131 114 * * * * 115	COMPUTE CORFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA POINT FOR EACH ORS SITE. CALL BOSEFIL, F.) ACTE LP=1 IS FOR A LINE SOLUTION. IN IS AD. DE ITERATIONS IN MINISOL. LP=1
** 131 114 ** ** ** ** ** ** ** ** ** ** ** ** *	COMPUTE CORFFECIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY WATA POINT FOR EACH ORS SITE. CALL BOTFFILE, CALL BO
** 13 * * 131 114 * * * * 115	COMPUTE CREFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY WATA PRINT FOR EACH ORS SITE. CALL BOTTER LIST FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP=1 1
** 13 * * * * 131 114 * * * * * 115 * * * * 14	COMPUTE CORFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY DATA PRINT FOR EACH ORS SITE. CALL BCCFF(L,F) OCTE LP=1 IS FOR A LINE SQUUTION. IN IS AD. OF ITERATIONS IN MINISOL. LP=1
** 13 * * * * 131 114 * * * * * 115 * * * * 14	COMPUTE CREFFICIENTS FOR SECOND ORDER LEAST SQUARES LOCAL FIT AT EVERY WATA PRINT FOR EACH ORS SITE. CALL BOTTER LIST FOR A LINE SOLUTION. IN IS NO. OF ITERATIONS IN MINISOL. LP=1 1

APPENDIX A - Continued

	CALL GGRGCN(PLATG,H,PLAT,PR)
*	FIND SOLUTION POINT, I.E. PLAT AND PLUN WHICH MINIMIZES RMS RESIDUAL
*	AT RADIUS PR
- · · ·	LALL MINISOLIPLAT, PLIN, PR, DR, IN, E(N))
T	CONVERT BACK TO GEOGRAPHIC AND DEGREES AND STORE ANSWERS
	LALL GENEGR(PLAT, PR, PLATG, TALT(N)) \$ TLAT(N)≈PLATG*DEG
	TL'N(N)=PLCN*DEG FOR EACH SITE STORE DATA POINT NUMBER WHICH IS NEAREST THE SOLUTION
*	FOR EACH SITE STORE DATA POINT NOMBER WHICH IS NEAREST THE STOUTTON
	00 141 L=1,((S
*	DETERMINE NO. OF SITES WHICH ARE USING END PUINT DATA
141	$C(L, \Lambda) = NP(L)$
	1S=)
	00 16 K=1,NS
	IF(NP(K), LE.1) IS=IS+1 IF(NP(K), GE, NB(K)) IS=IS+1
• .	and the contract of the contra
16	CONTINUE
*	IF ALL BUT ONE SITE USED END-POINT DATA, JUMP OUT OF LOOP.
	IF(IS.GE.NS-1) GO TO 15
*	IF PMS RESIDUAL IS TOO GREAT JUMP OUT OF LOOP
٠	TETETN .GT.0.131 GG TO 15 TE N IS TOO LARGE JUMP OUT OF LOOP
*	1F(N.ED. 99, CR.N. EQ. 1) GO TO 15
	INCREMENT H, GO TO 14 AND START MEXT SCRUTION POINT
- V	1=H+DNA+ND
*	16 ALTITUDE IS DECREASING JUMP OUT OF LOOP. ENTIRE LINE SOLUTION IS
*	NOW FINISHED
15	1FIND, EQ11 GO TO 331
*	RESET N AND NO TO START AT CENTER AND DECREASE ALTITUDE
•	12=N \$ N=51 \$ ND=-1
	92-4
331	5(1 = N)
*	PRINT TIME AS HEADING FOR COMPLETE SOLUTION PRINT-OUT
*	PRINT THE AS HEADING FOR COMPLETE SCHOOL VARIATION
202	PRINT 382, IHR, MIN, SEC FORMAT(*1TIME *12* HRS *12* MIN *F5, 1* SEC*)
382	
2.0	PRINT 38
38	FORMAT(* LINE SOLUTION*)
- 0	PRINT 39 FORMÄT (*) ALTITUDE LATITUDE LONG (TUDE RMS RES PTS ON AZ
39	\$-FL CURVE*)
3 *	PRINT OUT TOTAL NO. OF DATA PTS. FOR EACH SITE
¥	
242	PRINT 342,(N8(L),L=1,NS) FORMAT(52X,515)
342_	PRINT OUT SOLUTION POINTS FOR EACH N
分	DO 34 N=N1,N2
	PRINT 36, TALT(N), TLAT(N), TLON(N), E(N), (NC(L, N), L=1, NS)
36	FORMAT(F9.0, F12.3, F13.3, F11.4, I12, 415)
36 34	(ONTINUE
	66 10 116
35	FND
	UPV

APPENDIX A - Concluded

Program LARC Flow Chart

APPENDIX B

SUBPROGRAMS

	SUBREUTINE GGRGCN (GLAT, H, CLAT, CR)
*** ***	SUBPOUTINE TO CONVERT GEOGRAPHIC LATITUDE GLAT AND ALTITUDE H TO GEOCENTRIC LATITUDE CLAT, AND RADIUS CR
	\(\Lambda = \frac{63}{78} \cdot \frac{6}{8} = \frac{63}{58} \cdot \frac{784}{78} \cdot \frac{6}{8} = \frac{8}{8} = \frac{6}{3} \frac{6}{8} \cdot \frac{784}{8} \cdot \frac{6}{8} = \frac{8}{8} \frac{7}{4} \frac{6}{4} \tau \frac{1}{8} \frac{7}{8} = \frac{7}{8} \frac{1}{8} \frac{1}{8} \frac{7}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8}
	SUBROUTINE GONGGR (CLAT. CR. GLAT. H)
***	SUBROUTINE TO CONVERT GEOCENTRIC LATITUDE CLAT AND GEOCENTRIC RADIUS OR TO GEOGRAPHIC LATITUDE GLAT AND ALTITUDE H.
	A=6378.106
	SUBROUTINE PAZEL (SLAT, SLON, SH, PLAT, PLON, PR, AZ, EL)
C C≠×∗	**GIVEN AN CBS SITE S (IN GEOGRAPHIC COORDINATES) AND
	A PLINT P (IN GEOCENTRIC COORDINATES) IN SPACE, FIND THE LINE-OF-SIGHT (AZ, EL) FROM S TO P
	A=6378.166
*	COMPUTE GEOCENTRIC CARTESIAN COMPONENTS OF OBSISTES SRER+SH*COS(SLAT)
*	XS=SR*COS(SLUN)
*	YP=PR*CCS(PLAT)*SIN(PLON)
*	XA=XP-XS \$ YA=YP-YS
*	[X=-XA*SIN(SLCN)+YA*COS(SLON) ()Y=-XA*SIN(SLAT)*COS(SLON)-YA*SIN(SLAT)*SIN(SLON)+ZA*COS(SLAT) ()Z=+XA*COS(SLAT)*COS(SLON)+YA*COS(SLAT)*SIN(SLON)+ZA*SIN(SLAT) COMPUTE AZ-FL DIRECTION
***	AZ=ATAN2(DX,DY) {L=ATAN2(DZ,SQRT(DX*DX+DY*DY)) RETURN

APPENDIX B - Continued

```
SURRDUTINE SORT(L)
     CC" GETTE TAZ (5, 193), EL (5, 190), BC (3, 5, 190), EP ( 5 ), NB (51, LP
TO THE HIGH ALTITUDE END OF THE CLOUD.
14
     XS AUST BE MUDIFIED FOR A DIFFERENT SITE CONFIGURATION OR CLOUD
$ 18 X
     RIENTATION.
     1
     IF FLEVATION ANGLE OF ONE POINT IS EQUAL TO THAT OF ANOTHER,

EXCHANGE THE ONE POINT WITH THE VERY LAST POINT ON THE LIST,

AND DECREASE THE TOTAL NUMBER OF DATA POINTS BY 1.

OF 190 J=1,K

* IF ((EL(L, J)-EL(L, J+1))*XS) 100, 20,10
     18((1) = MB((4)-1 ....)
20
     CONTINUE
100
     FETURE
               # FMD
     SUBROUTINE ACREF (L.N.)
     COMMON/LINE/AZ(5,190), EL(5,190), BC(3,5,190), NP( 5 ), NB(5), LP
     LIMENSION
                       A(3,3),8(3),C(50,3),IP(3)
******THIS SUBPOUTINE COMPUTES THE THREE COEFFICIENTS FOR A SECOND ORDER
    LEAST SQUARES CURVE FIT TO THE AZ-EL DATA AT EVERY DATA POINT N.
THE COMPUTATION USES NO DATA POINTS CENTERED ABOUT N. EXCEPT AT THE ENDS
ŕ,c
     WHERE NO END POINTS ARE USED. THEINDEPENDENT VARIABLE IS
4:
     (L, NV)-EL(L, N) WHERE NV IS WITHIN THE SET NO.
     / G=25
     NO=NO+2
     NO=110-2
1.3
     LE THERE ARE FEWER THAN NO DATA POINTS, THEN DECREASE NO
     IF (HB(L).LT.MO) GO TO 10
   THE MIDDLE POINT OF THE SET NO, IS CALLED NM AND IS USUALLY THE SAME AS NO MES S NMEN S NG=(NG+1)/2

AT ENDS OF CURVE, NM IS SPACED NC POINTS FROM THE END.

IF (Molton) NMENC S IF (NoGTONR(L)+1-NC) NMENB(L)+1-NC
     IF (M.LT.NC) NM=NC & IF (N.GT.NB(L)+1-NC) NM=NB(L1+1-NC) THE FOLLOWING COMPUTES THE MATRICES A AND B WHICH ARE USED TO FIND THE
     EAST SQUARES FIT.
X;
     DC 20 I=1,NO
     25
     50
     b(I)=B(I)+C(K,I)*(AZ(L,NV)-AZ(L,N))*COS((EL(L,N)+EL(L,NV))/2)
SINEQ SOLVES THE EQUATION AY-P. THE COLUTION AY-P.
150
    SIMED SOLVES THE EQUATION AX=B. THE SOLUTION X IS RETURNED IN B. WHICH CONTAINS THE 3 COEFFICIENTS DESIRED.

CALL SIMEQ(A,M,B,1,D,1P,M,IS)
* *:
```

APPENDIX B - Continued

	DG 200 I=1,M	
k	THE CEFFFICIENTS B ARE STORED IN BC.	i
200	BC(I,t,N)=B(I)	
	IF(N. EQ.NB(L)) PRINT 301, L, N, N)	
301	FORMAT(*3L=*12* N=*14* N0=*13)	
	FETURIN S END	

	'Uarture RESOUR (PAZ, PEL, L, O, XP)
女歌大水水 名母故此	CIVER AN SU AND AZ OF A POINT FROM STATION L, FIND THE SESIONAL (ANGULAR DISTANCE BETWEEN THE POINT AND THE AZ-FL CURVE)
	COMMONUSTIES ANS, SLAT(5), SLON(5), SH(5), WT(5), DEG
物种的水池	FINC POINT FIMBER ON CURVE CLOSEST TO GIVEN PAZ PEL
	=: 1=':P(L)
1	1) St = 9 SN T.="1+40
	SN = (PAZ - AZ (, W) **C S (PEL) **2 + (PEL - EL (, N) **2
	IF(%.LT. N1) GO TO 2 D=-1
2	Ger IO 1 = -*O
ate the size after the	COMPUTE PESIDUAL FROM BC COFFFICIENTS CORRESPONDING TO N Al=PEL-TE(E,N) \$ Y1=(PAZ-AZ(E,N))*COS((PEL+EE(E,N1)/2.) ***********************************
*	Cl=BC(1,L,N)
	F=1.5*C2/C3
sk:	OC=0*P/4. +A*A*A/27. IF DISCRIMINANT IS LESS THAN ZERO, THERE ARE THREE REAL ROOTS
×.	IFCOC.LE.D.) SO TO F DISCRIMINANT IS GREATER THAN ZERO, COMPUTE THE ONE REAL ROOT.
	FDC=SORT(DC) # CA=~B/2.+RDC # CB=-B/2RDC # E=1./3. X=SIGN((ABS(CA))**E,CA)+SIGN((ABS(CB))**E,CB)-P/3.
	Y=C1+(C2+C3*X)*X
5	PHI=ACOS(-B/2./SQRT(-A*A*A/27.)) USC=100. COMPUTE THE THREE REAL ROCTS AND FIND THE SMALLEST.
4	90 (1=1,3 y=2, *SQRT(-4/3.)*C(S(PHI/3.+120.*(I-1)/DEG)-P/3.
	Y=C1+(C2+C3*Y)*X
6	CONTINUE DESORT(DSC)
	* FIR A POINT SOLUTION LP=2, AND THE FOLLOWING IS USED
13	Y = (PAZ-AZ(L,K))*COS(EL(1,K)) X=PEL-EL(L,K)
	FETURA \$ END

APPENDIX B - Continued

```
SUBEQUIINE SUMRES (PLAT, PLON, PR, E)
    ****GIVEN A POINT, CALCULATE THE ROOT-MEAN-SQUARE OF THE RESIDUALS FROM
  * ALL OBSERVATION SITES.

*****IF THE POINT IS OFF THE END OF THE AZ-EL CURVE OF A SITE, THEN THE WT FACTOR

****** F VILL DIMINISH THE PESIDUAL FROM THAT SITE AS DETERMINED BY DIST, THE

*****AVGULAR DISTANCE FROM THE END OF THE CURVE. HOWEVER, FOR THE TWO SITES

*****WHICH HAVE THE LEAST DISTANCE FROM THE END, MAKE DIST=0, SO THAT F=1, WHICH

*****GIVES FULL WT.
                    COMMON/SITES/NS, SLAT (5), SLON(5), SH(5), WT(5), DEG
COMMON/LINE/AZ(5, 190), FL(5, 190), BC(3, 5, 190), NP( 5 ), NB(5), LP
                    CONMUNISTIES/NS, SLAT (5), SLON(5), SH(5), WT(5), DEG
                    DIMENSION D(5), DIST(E)
        CALCULATE RESIDUAL

CALL RESOUE(PAZ, PEL, J, D(J), XD)

IF(NP(J), EQ.1.GR.NP(J), EQ.NB(J)) (ND=1
    *****SIRT DIST INTO INCREASING DEDER
                  10
    100___
                                                                                            F=O
IF(L<sub>o</sub>LE<sub>o</sub>2) DIST(L)=O<sub>o</sub>
                    ON 2 L=1.NS
F=A/(A+DIST(L))
                   F=A/(A+DISI(L))
CALCULATE RMS RESIDUAL
E=E+(D(L)*WT(L)*F)**2
E=SSDT/E/MS)
    2
                    E=SORT(E/NS)
          FETURN $ END
                    SUSPERITINE LETTILEPLAT, PLON, PR, DR, EM)
    *******ICR A GIVEN PLAT AND PR, THIS SUBROUTINE FINDS PLON WHICH GIVES THE
                MINIMUM, RMS RESIDUAL EM.
    ***** INCREMENT PLON BY DA UNTIL EZ IS THE LEAST DE THE THREE CONSECUTIVE
                  -MS RESIDUALS EL, E2, C3. USING THESE RESIDUALS COMPUTE APPROXIMATE PLON -HICH GIVES THE MINIMUM (WITH RESPECT TO PLON) RMS RESIDUAL EM.
                    THEN DECREASE DA AND REPEAT THE PROCEDURE.
                    ĺυ
                    1 + T = 6 T + 1
                                                                                                                                 1=0
                    FIND EMS RESIDENT FOR FIRST POINT.
                    CALL SUMMES (PLAT, PLON, PP, E1)
                    ^{N}\mathsf{I} = \mathsf{N}\mathsf{I} + \mathsf{I}
                                                                     S CALL SUMRES (PLAT, PLON, PR, E2)
                    PL. 1.= PL TO +DA
                    · [= \( [+1]
                    PELMEREGM+DA
                                                                * CALL SUMRES(PLAT, PLON, PR, E3)
                    PLCA = PL MI+DA
    2
                     1 = 01 | + 1
                                                                                                        and the second s
                     IF ( L.GT. 201 GO TO 5
                                                                                                                                                                         If (63.67.62) on the state sta
```

APPENDIX B - Concluded

*	FROM THREE RESIDUALS FIND NEW PLON FOR MINIMUM RESIDUAL
Ē.	DA=-(E3-F1)*DA/(E1-2*F2+F3)/2. \$ PLON=PLON-DA+DDA
	CALL SUMREST PLAT, PLON, PR, EMI
	IF(*1.05.10) PRINT 6.NI
Ġ	FORMATIME ITERATIONS IN CONMINSAIA)
λÇ	TEST FER 2 TIFRATIONS
	IF(NT_GE_2) RETURN
*	OF CREASE SIFP SIZE
	GA=DA/10.
	60 76 15
	0/4

	SUBSCUTINE MINISCL(PLAT, PLON, PR, DR, IN, E)
***	SUBROUTINE TO FIND A SOLUTION BY MINIMIZING THE RMS OF THE RESIDUALS
*	IF ALL SITES, WHILE KEEPING PR FIXED.
***	*INCREMENT PLAT BY DR. CALLING LONMIN TO FIND THE MINIMUM RMS OF RESIDUALS
. *	(AND THE CORRESPONDING PLON)
*	FOR EACH PLAT, UNTIL F2 IS THE LEAST OF THE CONSECUTIVE MINIMUM RMS
*	FESIDUALS F1, E2, F3.
*	ISTING THESE RESIDUALS COMPUTE APPROXIMATE PLAT WHICH GIVES THE
*	MINIMUM (WITH RESPECT TO BOTH PLAT AND PLON) RESIDUAL E.
*	THEM DECREASE DR AND REITERATE.
	The state of the s
	PI=3.1415926535898 \$ DEG=180./P!
	[T=0
1	DA=DR
*	FIND FIRST PLON WHICH MINIMIZES THE RMS RESIDUAL
	CALL LONGIN (PLAT, PLON, PR. DA, ELI
	PLAT = PLAT + DP & CALL LCVMIN(PLAT, PLON, PR.DA, EZ)
	IF(E2.LT.F1) GO TO 3
	PLAT=PLAT+OR
3	FLAT=PLAT+DR & CALL LENMIN(PLAT, PLON, PR, DA, E3)
	IF(L1.GE.20) GO TO 5
	IF(E3.GT.E2) G7 T0 5 \$ E1=E2 \$ E2=E3 \$ G0 T0 3
*	FREM THREE RESIDUALS FIND NEW PLAT FOR MINIMUM RMS RESIDUAL.
5	DDR=-(E3-E1)*DR/(E1-2*E2+E3)/2. \$ PLAT=PLAT-DR+DDR
	CALL LONNINIPLAT, PLOM, PR, DA, E1 \$ IT=IT+1 \$ DE=E*DEG
*	TEST FOR NO. OF ITERATIONS, AND DECREASE STEP.
	1FILT. EQ. IN GO TO 6 \$ DP = OR * DF \$ GO TO 1
6	CONTINUE
	F=0E
	PETURN * END

APPENDIX C

COORDINATE SYSTEMS AND CONVERSIONS

This appendix will describe the coordinate systems used and the subroutines involved.

Earth Model

For the purpose of triangulating from widely dispersed stations over the Earth's surface, the Fischer spheroid was adopted since it is believed to provide the best available global fit to the actual geoid. The relevant parameters are

Equatorial radius: A = 6378.166 km

Polar radius: $\underline{B} = 6356.784 \text{ km}$

Flattening factor: $\underline{F} = \frac{\underline{A} - \underline{B}}{\underline{A}} = \frac{1}{298.3}$

For this model, the deflection of the vertical, that is, the angle between the normal to the geoid and the normal to the Fischer spheroid nowhere exceeds 30 arc seconds which is sufficiently accurate for the present purposes, since pointing directions used in triangulation are referenced to the stars rather than to a local horizon.

Geographical Coordinate System

The geographical coordinate system is the conventional system of latitude, longitude, and altitude. Figure 6 shows an exaggerated spheroidal surface corresponding to the Earth's sea-level surface. The geographic latitude GLAT of a point P is the angle between the equatorial plane and a line drawn from P perpendicular to the spheroidal surface. The altitude H is measured from the surface at point G to the point P. The longitude GLON is measured eastward from Greenwich.

Geocentric Coordinate System

In this system, O is the Earth's center in figure 6. The X-axis is directed toward the intersection of Greenwich meridian with the equator. The Y-axis is directed toward 90° east longitude in the equatorial plane, and Z is directed toward the north geographic pole. The point P is also located by the geocentric longitude GLON, geocentric latitude CLAT, and radius CR from the Earth's center.

APPENDIX C - Continued

Topocentric Coordinates

This is a local system with center at some observation site S (see fig. 4) with the DX,DY plane coincident with the horizontal plane, with DX directed toward east, DY directed toward north, and DZ directed vertically (that is, perpendicular to the surface of the spheroid). In the polar version, a point P is located by azimuth angle AZ measured clockwise from DY (north), and elevation angle EL measured up from the horizontal plane, and range RA measured from S to P.

Conversion From Geographic to Geocentric

This conversion is accomplished by using subroutine GGRGCN. Reference to figure 4 shows that the point G on the spheroid follows the equation

$$\frac{\mathbb{R}^2}{\mathbb{A}^2} + \frac{\mathbb{Z}^2}{\mathbb{B}^2} = 1$$

where

$$\underline{\mathbf{R}^2} = \underline{\mathbf{X}^2} + \underline{\mathbf{Y}^2}$$

The slope on the ellipse is

$$\frac{d\underline{Z}}{d\underline{R}} = -\frac{\underline{B}^2 \ \underline{R}}{A^2 \ \underline{Z}}$$

hence

$$\tan \frac{\text{GLAT}}{\text{E}^2} = \frac{\underline{A^2} \, \underline{Z}}{\underline{B^2} \, \underline{R}}$$

or

$$\underline{\mathbf{Z}} = \underline{\mathbf{R}} \ \underline{\mathbf{E}} \ \text{tan} \ \underline{\mathbf{GLAT}}$$

where

$$\underline{\mathbf{E}} = \frac{\underline{\mathbf{B}}^2}{\mathbf{A}^2}$$

Substitution in the original equation gives

$$\underline{R} = \frac{\underline{A}}{\sqrt{1 + \underline{E} \tan^2 \underline{GLAT}}}$$

The geocentric coordinates of point P are then

$$\underline{RP} = \underline{R} + \underline{H} \cos \underline{GLAT}$$

$$ZP = Z + H \sin GLAT$$

$$\underline{CR} = \sqrt{\underline{RP}^2 + \underline{ZP}^2}$$

$$\underline{CLAT} = \tan^{-1} \frac{\underline{ZP}}{\underline{CR}}$$

Geocentric to Geographic Conversion

This inverse conversion cannot be obtained explicitly. Subroutine GCNGGR uses the following approximate formulas derived in reference 12.

The altitude is given by

$$\underline{\mathbf{H}} = \underline{\mathbf{C}} - \underline{\mathbf{A}} + \frac{1}{2} \underline{\mathbf{A}} \underline{\mathbf{F}} \left[1 - \cos \left(2\underline{\mathbf{C}} \underline{\mathbf{L}} \underline{\mathbf{A}} \underline{\mathbf{T}} \right) + \frac{1}{2} \left(\frac{\underline{\mathbf{F}}}{4} - \frac{\underline{\mathbf{A}} \underline{\mathbf{F}}}{\underline{\mathbf{C}} \underline{\mathbf{R}}} \right) \left(\cos \left(4\underline{\mathbf{C}} \underline{\mathbf{L}} \underline{\mathbf{A}} \underline{\mathbf{T}} \right) - 1 \right) \right]$$

where CLAT is the geocentric latitude and CR is the geocentric radius.

The geographic latitude is given by

$$\underline{GLAT} = \underline{CLAT} + \frac{\underline{A} \underline{F}}{\underline{CR}} \sin (2\underline{CLAT}) + \left(\underline{\frac{\underline{A} \underline{F}}{CR}}\right)^{2} \left(1 - \frac{\underline{CR}}{\underline{4\underline{A}}}\right) \sin (4\underline{CLAT})$$

It should be noted that all angles must be expressed in radians.

REFERENCES

- Adamson, D.; Fricke, C. L.; Long, S. A. T.; Landon, W. F.; and Ridge, D. L.: Preliminary Analysis of NASA Optical Data Obtained in Barium Ion Cloud Experiment of September 21, 1971. J. Geophys. Res., vol. 78, no. 25, Sept. 1, 1973, pp. 5769-5784.
- 2. Brown, Duane C.: A Solution to the General Problem of Multiple Station Analytical Stereotriangulation. AFMTC-TR-58-8, U.S. Air Force, Feb. 1958. (Available from DDC as AD 134278.)
- 3. Hogge, John E.: Three Ballistic Camera Data Reduction Methods Applicable to Reentry Experiments. NASA TN D-4260, 1967.
- 4. Lloyd, K. H.: Concise Method for Photogrammetry of Objects in the Sky. WRE-TN-72, Aust. Def. Sci. Serv., Aug. 1971.
- 5. Whipple, Fred L.; and Jacchia, Luigi G.: Reduction Methods for Photographic Meteor Trails. Smithsonian Contrib. Astrophys., vol. 1, no. 2, 1957, pp. 183-206.
- 6. Justus, C. G.; Edwards, H. D.; and Fuller, R. N.: Analysis Techniques for Determining Mass Motions in the Upper Atmosphere From Chemical Releases.

 AFCRL-64-187, U.S. Air Force, Jan. 1964. (Available from DDC as AD 435678.)
- 7. Brown, Duane C.: A Treatment of Analytical Photogrammetry. AFMTC-TR-57-22, U.S. Air Force, Aug. 1957. (Available from DDC as AD 124144.)
- 8. Brown, Duane C.: An Advanced Reduction and Calibration for Photogrammetric Cameras. AFCRL-64-40, U.S. Air Force, Jan. 1964.
- 9. Harp, Bill F.: Photogrammetric Calibration of the NASA-Wallops Island Image Intensifier System. Contract No. NAS 6-2066, DBA Systems, Inc., May 15, 1972. (Available as NASA CR-137455.)
- 10. Beers, Yardley: Introduction to the Theory of Error. Second ed., Addison-Wesley Pub. Co., Inc., c.1957.
- 11. Goldstein, Herbert: Classical Mechanics. Addison-Wesley Pub. Co., Inc., c.1959.
- 12. Long, Sheila Ann T.: Derivation of Transformation Formulas Between Geocentric and Geodetic Coordinates for Nonzero Altitudes. NASA TN D-7522, 1974.

TABLE I.- COMPARISON OF VARIOUS TRIANGULATION METHODS

Reference	Author's name		Number of observation sites	Method of solution	
2	Brown	Point	Many	Least-squares method	
3	Hogge	Point	Several	Least-squares method	
		Straight line	2	Intersection of ray from one site with plane from other site	
		Curved line	2	Intersection of ray from one site with surface defined by 3d order least-squares fit to data from other site	
4	Lloyd	Points	2	Midpoint of minimum skew distance between rays from each site	
		Straight line	2	Intersection of two planes	
		Curved line	2	Intersection of ray from one site with surface from other site	
5	Whipple	Straight line	2	Intersection of two planes	
6	Justus	Point	2	Equal residuals	
		Curved line	2	Intersection of ray from one site with surface from other site	

TABLE II. - INPUT DATA FOR ILLUSTRATIVE EXAMPLE

SLATE 31.6933 SLONE 10.8776 SALTE 2.3660 SLATE 37.9266 SLONE 770.7673 SALTE 2.3660 TIME 3 HR 18 MIN 10.3 SEC TIME 3 HR 18 MIN 10.3 SEC STA 1 PT 2 AZE 119.1804 ELF 63.2238 MT HERKINS CAN C-2 3.19.1 STA 1 PT 2 AZE 119.1804 ELF 63.2238 MT HERKINS CAN C-2 3.19.1 STA 1 PT 2 AZE 119.1804 ELF 63.2238 MT HERKINS CAN C-2 3.18.1 STA 1 PT 3 AZE 119.3330 ELF 63.2038 MT HERKINS CAN C-2 3.18.1 STA 1 PT 5 AZE 119.3330 ELF 63.0731 MT HERKINS CAN C-2 3.18.1 STA 1 PT 5 AZE 119.0339 ELF 63.0731 MT HERKINS CAN C-2 3.18.1 STA 1 PT 5 AZE 119.0330 ELF 63.0731 MT HERKINS CAN C-2 3.18.1 STA 1 PT 5 AZE 119.0648 ELF 62.9647 MT HERKINS CAN C-2 3.18.1 STA 1 PT 5 AZE 119.0648 ELF 62.9647 MT HERKINS CAN C-2 3.18.1 STA 1 PT 7 AZE 119.0648 ELF 62.9647 MT HERKINS CAN C-2 3.18.1 STA 1 PT 7 AZE 119.0364 ELF 62.9648 MT HERKINS CAN C-2 3.18.1 STA 1 PT 7 AZE 120.0707 ELF 62.7521 MT HERKINS CAN C-2 3.18.1 STA 1 PT 10 AZE 120.0944 ELF 62.7521 MT HERKINS CAN C-2 3.18.1 STA 1 PT 10 AZE 120.0944 ELF 62.6328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 12 AZE 120.0449 ELF 62.6328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 12 AZE 120.0449 ELF 62.6328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 14 AZE 120.3706 ELF 62.6328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 14 AZE 120.3706 ELF 62.6328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 14 AZE 120.3706 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 14 AZE 120.3706 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.03449 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.0349 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.0349 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.0349 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.0349 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.0340 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 17 AZE 120.0340 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 19 AZE 120.0340 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 19 AZE 120.0340 ELF 62.26328 MT HERKINS CAN C-2 3.18.1 STA 1 PT 19 AZE 120.0340 ELF 62.26328 MT HERKINS CA		3 5	TAT	ION T	RIANG	ULATI	ON								
SLAT=		SIA	T ±	31.4	953	SLOW	110 B77%	- · · · · · · · · · · · · · · · · · · ·	. +	7.70					
STATE						. SLOW	= -11000(14 = -70 7473		L [= _ <u>Z • 3</u>	240					
TIME 3 HR 18 MIN 10,3 SEC													·		
STA 1			•	7 1 0 4			7.4/11/			100	-				
STA PT A 119,0452 EL 43,2738 MT HPKINS CAN C-2 3,18,1 STA PT 2 A2 119,1804 EL 43,2208 MT HPKINS CAN C-2 3,18,1 STA PT 3 A2 119,2919 EL 43,2418 MT HPKINS CAN C-2 3,18,1 STA PT 4 A2 118,4330 EL 43,2912 MT HPKINS CAN C-2 3,18,1 STA PT 5 A2 119,5394 EL 43,2912 MT HPKINS CAN C-2 3,18,1 STA PT 7 A2 119,4380 EL 43,2912 MT HPKINS CAN C-2 3,18,1 STA PT 7 A2 119,4304 EL 42,9404 MT HPKINS CAN C-2 3,18,1 STA PT 7 A2 119,4304 EL 42,9404 MT HPKINS CAN C-2 3,18,1 STA PT 7 A2 119,4304 EL 42,9404 MT HPKINS CAN C-2 3,18,1 STA PT 8 A2 119,4304 EL 42,9404 MT HPKINS CAN C-2 3,18,1 STA PT C A2 20,7076 EL 42,9404 MT HPKINS CAN C-2 3,18,1 STA PT C A2 20,7076 EL 42,656 MT HPKINS CAN C-2 3,18,1 STA PT 11 A2 20,3113 EL 42,656 MT HPKINS CAN C-2 3,18,1 STA PT 12 A2 120,4445 EL 42,656 MT HPKINS CAN C-2 3,18,1 STA PT 13 A2 120,7676 EL 42,656 MT HPKINS CAN C-2 3,18,1 STA PT 14 A2 120,7676 EL 42,269 MT HPKINS CAN C-2 3,18,1 STA PT 15 A2 120,7676 EL 42,269 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,269 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 16 A2 120,1766 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 17 A2 121,0636 EL 42,229 MT HPKINS CAN C-2 3,18,1 STA PT 16 A2 122,176 EL 42,229 MT HPKINS CAN C-2 3,18,1		TIME		3 HR	18	MIN	10.0 SEC								
STA PT 2 AZ= 119,1804 EL= 43,2295 MT HOPKINS CAW C-2 3,18,1 STA PT 4 AZ= 119,4330 EL= 43,1431 MT HOPKINS CAW C-2 3,18,1 STA PT 5 AZ= 119,2394 EL= 43,0773 MT HOPKINS CAW C-2 3,18,1 STA PT 5 AZ= 119,2394 EL= 43,0773 MT HOPKINS CAW C-2 3,18,1 STA PT 5 AZ= 119,3644 EL= 42,8324 MT HOPKINS CAW C-2 3,18,1 STA PT 7 AZ= 13,3644 EL= 42,8324 MT HOPKINS CAW C-2 3,18,1 STA PT 7 AZ= 13,3644 EL= 42,8324 MT HOPKINS CAW C-2 3,18,1 STA PT 7 AZ= 13,3644 EL= 42,8324 MT HOPKINS CAW C-2 3,18,1 STA PT 10 AZ= 120,3767 EL= 42,6353 MT HOPKINS CAW C-2 3,18,1 STA PT 11 AZ= 120,3767 EL= 42,6453 MT HOPKINS CAW C-2 3,18,1 STA PT 12 AZ= 120,4767 EL= 42,6453 MT HOPKINS CAW C-2 3,18,1 STA PT 13 AZ= 120,7676 EL= 42,4393 MT HOPKINS CAW C-2 3,18,1 STA PT 14 AZ= 120,7776 EL= 42,4393 MT HOPKINS CAW C-2 3,18,1 STA PT 15 AZ= 120,7776 EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,7776 EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,7776 EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,6736 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,2356 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,236 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ= 120,646 F EL= 42,236 MT HOPKINS CAW C-2 3,18,1 STA PT 17 AZ=		STA	1					F! =	43.2739	MT HOP	KINS	A 1 C-2	3.18		
STA PT 3 A2 = 119,2919 EL = 43,073 MT HPPKINS CAW C-2 3,18,1 STA PT 5 A2 = 119,5399 EL = 43,073 MT HPPKINS CAW C-2 3,18,1 STA PT 5 A2 = 119,5399 FL = 43,073 MT HPPKINS CAW C-2 3,18,1 STA PT 6 A2 = 119,5399 FL = 43,0121 MT HPPKINS CAW C-2 3,18,1 STA PT 7 A2 = 119,8046 EL = 42,9447 MT HPPKINS CAW C-2 3,18,1 STA PT 7 A2 = 119,8046 EL = 42,8324 MT HPPKINS CAW C-2 3,18,1 STA PT 7 A2 = 120,0767 EL = 42,7521 MT HPPKINS CAW C-2 3,18,1 STA PT 0 A2 = 120,0767 EL = 42,7521 MT HPPKINS CAW C-2 3,18,1 STA PT 10 A2 = 120,1941 EL = 42,6450 MT HPPKINS CAW C-2 3,18,1 STA PT 11 A2 = 120,3110 EL = 42,6400 MT HPPKINS CAW C-2 3,18,1 STA PT 13 A2 = 120,5667 EL = 42,4992 MT HPPKINS CAW C-2 3,18,1 STA PT 13 A2 = 120,5667 EL = 42,4993 MT HPPKINS CAW C-2 3,18,1 STA PT 13 A2 = 120,5667 EL = 42,4993 MT HPPKINS CAW C-2 3,18,1 STA PT 14 A2 = 120,5667 EL = 42,4993 MT HPPKINS CAW C-2 3,18,1 STA PT 14 A2 = 120,5668 EL = 42,43568 MT HPPKINS CAW C-2 3,18,1 STA PT 15 A2 = 120,07076 EL = 42,4396 MT HPPKINS CAW C-2 3,18,1 STA PT 17 A2 = 121,0546 FL = 42,2229 MT HPPKINS CAW C-2 3,18,1 STA PT 17 A2 = 121,0546 FL = 42,2229 MT HPPKINS CAW C-2 3,18,1 STA PT 17 A2 = 121,0546 FL = 42,2356 MT HPPKINS CAW C-2 3,18,1 STA PT 17 A2 = 121,0546 FL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL = 42,236 MT HPPKINS CAW C-2 3,18,1 STA PT 19 A4 = 121,2412 EL =			1	PT	2 -				43,2385	MT HOP	KINS C	AM C-2	3-18	<u> </u>	
STA PT 6 AZ = 119,4330 EL = A3,0173 MT HDPKINS CAM C = 2 3,18,1		STA	ī	PT					43.1431	MT HOP	KINS C	A 4 C-2	3.18	. 1	
STA			1						43.0773	MT HOP	KINS C	AM C-2	3.18	<u> </u>	
STA PT			1	PT	5				43.0121	MT HOP	KINS C	AM C-2	3.18	. 1	
STA PT 7 AL = 119.8046 EL = 42.8324 MT HOPKINS CAM C-2 3.18.1 STA PT 8 AL = 119.8046 EL = 42.8175 MT HOPKINS CAM C-2 3.18.1 STA PT 0 AL = 120.9767 EL = 42.6308 MT HOPKINS CAM C-2 3.18.1 STA PT 11 AL = 126.311 EL = 42.6308 MT HOPKINS CAM C-2 3.18.1 STA PT 12 AL = 120.311 EL = 42.6308 MT HOPKINS CAM C-2 3.18.1 STA PT 13 AL = 120.5667 EL = 42.4303 MT HOPKINS CAM C-2 3.18.1 STA PT 14 AL = 120.5667 EL = 42.4303 MT HOPKINS CAM C-2 3.18.1 STA PT 13 AL = 120.5786 EL = 42.4293 MT HOPKINS CAM C-2 3.18.1 STA PT 15 AL = 120.7786 EL = 42.4393 MT HOPKINS CAM C-2 3.18.1 STA PT 15 AL = 120.7786 EL = 42.4393 MT HOPKINS CAM C-2 3.18.1 STA PT 15 AL = 120.7786 EL = 42.23568 MT HOPKINS CAM C-2 3.18.1 STA PT 17 AL = 121.0436 EL = 42.2399 MT HOPKINS CAM C-2 3.18.1 STA PT 17 AL = 121.0436 EL = 42.2399 MT HOPKINS CAM C-2 3.18.1 STA PT 18 AL = 121.1717 EL = 42.1565 MT HOPKINS CAM C-2 3.18.1 STA PT 18 AL = 121.1717 EL = 42.2399 MT HOPKINS CAM C-2 3.18.1 STA PT 19 AL = 121.831 EL = 42.0328 MT HOPKINS CAM C-2 3.18.1 STA PT 19 AL = 121.832 EL = 42.0328 MT HOPKINS CAM C-2 3.18.1 STA PT 20 AL = 121.8336 EL = 42.0328 MT HOPKINS CAM C-2 3.18.1 STA PT 21 AL = 121.6337 EL = 42.0328 MT HOPKINS CAM C-2 3.18.1 STA PT 22 AL = 121.8336 EL = 41.8837 MT HOPKINS CAM C-2 3.18.1 STA PT 24 AL = 121.8336 EL = 41.8336 MT HOPKINS CAM C-2 3.18.1 STA PT 25 AL = 122.105 EL = 41.6182 MT HOPKINS CAM C-2 3.18.1 STA PT 25 AL = 122.105 EL = 41.6182 MT HOPKINS CAM C-2 3.18.1 STA PT 26 AL = 122.105 EL = 41.6182 MT HOPKINS CAM C-2 3.18.1 STA PT 37 AL = 122.3336 EL = 41.3435 MT HOPKINS CAM C-2 3.18.1 STA PT 37 AL = 122.3736 EL = 41.6182 MT HOPKINS CAM C-2 3.18.1 STA PT 37 AL = 123.3379 EL = 41.6182 MT HOP									42.9467	MT HOP	KINS C	AM C-2	3.18	/_ -	
STA PT 6		STA	1	PT		42=	119.8046	EL≍	42.8824	мт нов	KINS C	4™ C-2	3.18	. 1	
STA		STA	1	PT	В				42.8175	MT HOP	KINS C	AM C-2	3.13	1	
STA			1		Ċ	ΛZ =	120.0707	£L=	42.7521	MT HOP	KINS C	AM C-2	3,18	1	
STA			1	PT	10	ΛZ=	120.1941	든ᆫᆓ	42.6968	MT HOP	KINS C	AM C-2	3,18	1	–
STA 1 PT 12 AZ= 120.4649 EL= 42.5552 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 13 AZ= 120.5667 CL= 42.4893 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 14 AZ= 120.5786 EL= 42.4229 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 15 AZ= 120.7776 EL= 42.3568 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 16 AZ= 120.723 EL= 42.2399 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 17 AZ= 121.0636 FL= 42.2229 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 13 AZ= 121.171; EL= 42.1555 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 13 AZ= 121.171; EL= 42.1555 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 19 AZ= 121.2112 EL= 42.0999 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 20 AZ= 121.6212 EL= 42.0999 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 20 AZ= 121.6262 EL= 42.0228 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 21 AZ= 121.5237 EL= 41.9556 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 22 AZ= 121.6660 EL= 41.8887 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 121.7643 FL= 41.7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 121.7649 FL= 41.7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 121.3944 FL= 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 121.3944 FL= 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 121.3944 FL= 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 122.3316 FL= 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ= 122.227T EL= 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ= 122.3316 FL= 41.4343 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ= 122.4529 FL= 41.4343 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ= 122.4579 FL= 41.3435 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 37 AZ= 122.4579 FL= 41.3435 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 37 AZ= 122.4579 FL= 41.6767 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 38 AZ= 122.4580 FL= 41.6767 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 39 AZ= 122.4579 FL= 41.6767 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ= 123.0379 FL= 41.6767 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ= 123.0379 FL= 41.6767 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ= 123.0379 FL= 41.6767 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 4 AZ= 349.5535 FL= 48.9375 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ= 349.5535 FL= 48.9375 CHILE CAM D-3 3,18,10 STA 2 PT			1					EL =	42.6210	MT HOP	KINS C	AM C-2	3,18	-1	
STA			1		12			EL∍	42.5552	MT HOP	KINS C	AM C-2	3.18	.1	
STA 1 PT 15 AZ = 120.7076 EL = 42.3568 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 17 AZ = 120.6223 EL = 42.2399 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 17 AZ = 121.0436 EL = 42.2399 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 18 AZ = 121.0714 EL = 42.1565 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 19 AZ = 121.2714 EL = 42.1565 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 20 AZ = 121.8022 EL = 42.0939 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 20 AZ = 121.8022 EL = 42.0939 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 20 AZ = 121.8237 EL = 41.9556 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 22 AZ = 121.5237 EL = 41.9556 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 23 AZ = 121.7643 EL = 41.8897 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 24 AZ = 121.7643 EL = 41.9526 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.9344 EL = 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.9344 EL = 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.9344 EL = 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122.2316 EL = 41.4899 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 28 AZ = 122.3316 EL = 41.4899 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ = 122.6529 EL = 41.4899 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.6529 EL = 41.4899 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.3316 EL = 41.4899 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.3366 EL = 41.4899 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.30379 EL = 41.9383 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 35 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 A49.3535 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ = 349.5535 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.6555 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6555 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6355 E			-						42.4893	MT HOP	KINS C	AM C-2	3,18	1	
STA 1 PT 12 AZ = 120, 0223 EL = 42,2999 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 17 AZ = 121,0436 FL = 42,2229 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 13 AZ = 121,1714 EL = 42,2229 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 19 AZ = 121,0212 EL = 42,0999 MT HOPKINS CAM C-2 3,19,1 STA 1 PT 20 AZ = 121,0212 EL = 42,0999 MT HOPKINS CAM C-2 3,19,1 STA 1 PT 21 AZ = 121,0212 EL = 42,0228 MT HOPKINS CAM C-2 3,19,1 STA 1 PT 21 AZ = 121,0237 EL = 41,0956 MT HOPKINS CAM C-2 3,19,1 STA 1 PT 22 AZ = 121,0263 EL = 41,8887 MT HOPKINS CAM C-2 3,19,1 STA 1 PT 23 AZ = 121,7643 FL = 41,9258 MT HOPKINS CAM C-2 3,19,1 STA 1 PT 24 AZ = 121,7643 FL = 41,7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121,0969 EL = 41,7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121,3944 FL = 41,6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 26 AZ = 122,1165 EL = 41,6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122,2271 EL = 41,5496 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 28 AZ = 122,3316 FL = 41,4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ = 122,5736 FL = 41,4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122,5736 FL = 41,4121 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122,5736 FL = 41,1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ = 122,5736 FL = 41,1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 122,5736 FL = 41,1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 122,5736 FL = 41,1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123,3379 EL = 41,1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123,0379 EL = 41,0074 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123,0379 EL = 41,0074 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123,0500 EL = 40,098 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123,0500 EL = 49,098 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ = 349,5355 EL = 46,1234 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349,5655 EL = 46,975 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349,5675 EL = 48,5730 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349,6879 EL = 48,5730 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349,6355 EL = 48,5730 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349,5386									42.4229	MT HOP	KINS C	AM C-2	3,18	1	
STA									42.3568	MT HOP	KINS C	AC_2	3,18	. 1	
STA 1 PT 13 AZ= 121.714 EL= 42.1565 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 19 AZ= 121.2402 EL= 42.0809 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 20 AZ= 121.4022 EL= 42.0809 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 21 AZ= 121.5237 EL= 41.9556 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 22 AZ= 121.6409 EL= 41.8887 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 23 AZ= 121.7643 HL= 41.8887 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 25 AZ= 121.7648 EL= 41.7536 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 25 AZ= 121.7648 EL= 41.7536 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 25 AZ= 122.3944 FL= 41.6863 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 26 AZ= 122.1065 EL= 41.6182 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 27 AZ= 122.2271 EL= 41.5496 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 28 AZ= 122.3316 FL= 41.4809 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 28 AZ= 122.4529 FL= 41.4121 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 30 AZ= 122.4529 FL= 41.421 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 30 AZ= 122.5864 FL= 41.43435 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 31 AZ= 122.6864 FL= 41.23435 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 32 AZ= 122.4629 FL= 41.24385 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 33 AZ= 122.6864 FL= 41.2438 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 33 AZ= 122.6864 FL= 41.2488 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 33 AZ= 122.6864 FL= 41.2488 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 33 AZ= 122.6865 FL= 41.1368 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 33 AZ= 123.2606 EL= 40.9988 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 36 AZ= 123.3790 EL= 41.0674 MT HOPKINS CAM C-2 3.18.1 STA 1 PT 36 AZ= 123.3790 EL= 41.0674 MT HOPKINS CAM C-2 3.18.1 STA 2 PT 3 AZ= 123.1260 EL= 40.9988 MT HOPKINS CAM C-2 3.18.1 STA 2 PT 3 AZ= 123.1260 EL= 49.6937 MT HOPKINS CAM C-2 3.18.1 STA 2 PT 3 AZ= 349.5519 FL= 49.6524 CHILE CAM D-3 3.18.10 STA 2 PT 5 AZ= 349.5659 FL= 48.9745 CHILE CAM D-3 3.18.10 STA 2 PT 7 AZ= 349.6660 FL= 49.7143 CHILE CAM D-3 3.18.10 STA 2 PT 7 AZ= 349.6660 FL= 49.7143 CHILE CAM D-3 3.18.10 STA 2 PT 11 AZ= 349.6659 FL= 48.4066 CHILE CAM D-3 3.18.10 STA 2 PT 11 AZ= 349.6659 FL= 48.4073 CHILE CAM D-3 3.18.10 STA 2 PT 11 AZ= 349.6659 FL						$\Delta Z =$	L 20. °223		42.2399	MT HOP	KINS C	AM C-2	3,18	<u>, l</u>	
STA 1 PT 19 AZ= 121.2812 EL= 42.0899 MT HORKINS CAM C-2 3,18;1 STA 1 PT 20 AZ= 121.4622 EL= 42.028 MT HORKINS CAM C-2 3,18;1 STA 1 PT 21 AZ= 121.5237 EL= 41.6556 MT HORKINS CAM C-2 3,18;1 STA 1 PT 22 AZ= 121.6460 EL= 41.8887 MT HORKINS CAM C-2 3,18;1 STA 1 PT 23 AZ= 121.7649 EL= 41.8887 MT HORKINS CAM C-2 3,18;1 STA 1 PT 24 AZ= 121.8680 EL= 41.7536 MT HORKINS CAM C-2 3,18;1 STA 1 PT 24 AZ= 121.8680 EL= 41.7536 MT HORKINS CAM C-2 3,18;1 STA 1 PT 25 AZ= 121.9944 EL= 41.6863 MT HORKINS CAM C-2 3,18;1 STA 1 PT 26 AZ= 122.3946 EL= 41.6962 MT HORKINS CAM C-2 3,18;1 STA 1 PT 27 AZ= 122.227T EL= 41.5496 MT HORKINS CAM C-2 3,18;1 STA 1 PT 27 AZ= 122.2316 EL= 41.4809 MT HORKINS CAM C-2 3,18;1 STA 1 PT 28 AZ= 122.3316 EL= 41.4809 MT HORKINS CAM C-2 3,18;1 STA 1 PT 29 AZ= 122.4620 TL= 41.4809 MT HORKINS CAM C-2 3,18;1 STA 1 PT 29 AZ= 122.4620 TL= 41.4809 MT HORKINS CAM C-2 3,18;1 STA 1 PT 30 AZ= 122.5736 EL= 41.3435 MT HORKINS CAM C-2 3,18;1 STA 1 PT 31 AZ= 122.6074 EL= 41.2057 MT HORKINS CAM C-2 3,18;1 STA 1 PT 31 AZ= 122.6074 EL= 41.2057 MT HORKINS CAM C-2 3,18;1 STA 1 PT 30 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 1 PT 36 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 1 PT 36 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 1 PT 36 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 1 PT 36 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 1 PT 36 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 1 PT 36 AZ= 123.0379 EL= 41.0674 MT HORKINS CAM C-2 3,18;1 STA 2 PT 3 AZ= 349.5519 EL= 49.0524 MT HORKINS CAM C-2 3,18;1 STA 2 PT 3 AZ= 349.5519 EL= 49.0524 CHILE CAM D-3 3,18;10 STA 2 PT 4 AZ= 349.5519 EL= 49.0524 CHILE CAM D-3 3,18;10 STA 2 PT 6 AZ= 349.5519 EL= 49.7539 CHILE CAM D-3 3,18;10 STA 2 PT 6 AZ= 349.5609 EL= 48.7143 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ= 349.6699 EL= 48.5719 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ= 349.6899 EL= 48.3714 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ= 349.6899 EL= 48.3705 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ= 349.6736 EL= 48.3736						<u> </u>	121.0436		42.2229	MT HOP	KINS C	AM C-2	3,19,	1	
STA 1 PT 20 AZ = 121.4622 EL = 42.0228 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 21 AZ = 121.5237 EL = 41.9556 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 22 AZ = 121.6460 EL = 41.8887 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 25 AZ = 121.7643 EL = 41.6212 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 26 AZ = 121.7643 EL = 41.6212 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 27 AZ = 121.2794 EL = 41.6863 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 26 AZ = 122.394 EL = 41.6182 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 26 AZ = 122.1105 EL = 41.6182 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 27 AZ = 122.271 EL = 41.46182 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 29 AZ = 122.3316 EL = 41.46182 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 29 AZ = 122.4526 EL = 41.46182 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 30 AZ = 122.5736 EL = 41.4612 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 31 AZ = 122.4626 EL = 41.2748 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 32 AZ = 122.6844 EL = 41.2748 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 32 AZ = 122.6874 EL = 41.2057 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 32 AZ = 122.8074 EL = 41.2057 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 34 AZ = 123.0379 EL = 41.0674 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 35 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18;1 STA 1 PT 36 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18;1 STA 2 PT 3 AZ = 349.5535 EL = 46.9294 MT HOPKINS CAM C-2 3,18;1 STA 2 PT 3 AZ = 349.5519 ÉL = 48.9852 CHILE CAM D-3 3,18;10 STA 2 PT 3 AZ = 349.5519 ÉL = 48.9852 CHILE CAM D-3 3,18;10 STA 2 PT 6 AZ = 349.5619 ÉL = 48.9852 CHILE CAM D-3 3,18;10 STA 2 PT 7 AZ = 349.6660 EL = 48.7143 CHILE CAM D-3 3,18;10 STA 2 PT 7 AZ = 349.6660 EL = 48.7622 CHILE CAM D-3 3,18;10 STA 2 PT 7 AZ = 349.6660 EL = 48.7626 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ = 349.6660 EL = 48.9739 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ = 349.6689 EL = 48.9739 CHILE CAM D-3 3,18;10 STA 2 PT 1 AZ = 349.6689 EL = 48.9762 CHILE CAM D-3 3,18;10 STA 2 PT 11 AZ = 349.6689 EL = 48.9762 CHILE CAM D-3 3,18;10 STA 2 PT 12 AZ = 349.6899 EL = 48.9762 CHILE CAM D-3 3,18;10 STA 2 PT 14 AZ = 349.6793 EL = 48.9762 CHILE CAM D-3			_						42.1565	MT HOP	KINS C	AM_C-2	3,18,	<u>.</u> 1	
STA 1 PT 22 AZ = 121.5237 EL = 41.9556 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 22 AZ = 121.6460 EL = 41.8756 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 23 AZ = 121.7643 FL = 41.8756 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.7643 FL = 41.7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.7645 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.764 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 26 AZ = 122.3165 EL = 41.5186 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122.2271 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 28 AZ = 122.3316 FL = 41.4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ = 122.4526 FL = 41.4121 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.5736 FL = 41.4335 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.5736 FL = 41.3435 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.6864 FL = 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.8074 FL = 41.2057 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ = 122.8074 FL = 41.2057 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ = 123.0379 FL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.0379 FL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.1260 FL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.1260 FL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 123.1260 FL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 123.1260 FL = 40.9094 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 123.1260 FL = 40.9094 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 349.5135 FL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.5135 FL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.513 FL = 49.5799 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.6055 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.6055 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6055 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.7143 CHILE C									42.0899	.₩I HJ₽	<u>KINS</u> C	AM C-2	3,19	<u>. 1</u>	
STA PT 22 AZ = 121.6660 FL = 41.8887 MT HOPKINS CAM C-2 3,18,1 STA PT 23 AZ = 121.7643 FL = 41.8212 MT HOPKINS CAM C-2 3,18,1 STA PT 24 AZ = 121.8680 FL = 41.7536 MT HOPKINS CAM C-2 3,18,1 STA PT 25 AZ = 121.9944 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA PT 26 AZ = 121.9344 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA PT 26 AZ = 122.2271 FL = 41.5496 MT HOPKINS CAM C-2 3,18,1 STA PT 27 AZ = 122.2271 FL = 41.5496 MT HOPKINS CAM C-2 3,18,1 STA PT 28 AZ = 122.3316 FL = 41.4809 MT HOPKINS CAM C-2 3,18,1 STA PT 29 AZ = 122.5736 FL = 41.3435 MT HOPKINS CAM C-2 3,18,1 STA PT 31 AZ = 122.5736 FL = 41.3435 MT HOPKINS CAM C-2 3,18,1 STA PT 32 AZ = 122.6374 FL = 41.2748 MT HOPKINS CAM C-2 3,18,1 STA PT 33 AZ = 122.9165 FL = 41.368 MT HOPKINS CAM C-2 3,18,1 STA PT 34 AZ = 123.3379 FL = 41.6074 MT HOPKINS CAM C-2 3,18,1 STA PT 35 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 36 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 36 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 36 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 37 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 37 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 37 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 38 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA PT 37 AZ = 349.5519 FL = 46.8752 CHILE CAM D-3 3,18,10 STA PT 38 AZ = 123.66519 FL = 49.6252 CHILE CAM D-3 3,18,10 STA PT 39 AZ = 349.6519 FL = 49.6468 CHILE CAM D-3 3,18,10 STA PT 39 AZ = 349.6669 FL = 49.6468 CHILE CAM D-3 3,18,10 STA PT 10 AZ = 349.6689 FL = 48.646									42,0228	WI HUD	KINS C	AM C-2	3,18	<u>. 1</u>	
STA 1 PT 25 AZ= 121.7643 FL= 41.8212 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 24 AZ= 121.8080 EL= 41.7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ= 121.9944 FL= 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 26 AZ= 122.1105 EL= 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ= 122.2271 EL= 41.6182 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 28 AZ= 122.3316 EL= 41.4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ= 122.4629 FL= 41.4121 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ= 122.6864 FL= 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 31 AZ= 122.6864 FL= 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ= 122.6864 FL= 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ= 122.6864 FL= 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ= 122.6864 FL= 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ= 122.8074 FL= 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ= 123.3379 EL= 41.6674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ= 123.1260 EL= 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ= 123.3700 EL= 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ= 349.5335 EL= 49.6574 MT HIPKINS CAM C-2 3,18,1 STA 2 PT 2 AZ= 349.5315 EL= 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ= 349.5315 EL= 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ= 349.6160 FL= 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ= 349.6365 EL= 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ= 349.6365 EL= 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ= 349.6365 EL= 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ= 349.6365 EL= 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 1 AZ= 349.6369 FL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 1 AZ= 349.6369 FL= 48.9436 CHILE CAM D-3 3,18,10 STA 2 PT 1 AZ= 349.6369 FL= 48.9436 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ= 349.6369 FL= 48.9403 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ= 349.6369 FL= 48.9403 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ= 349.6369 FL= 48.9403 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ= 349.6369 FL= 48.9403 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ= 349.7396 EL= 48.9403 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ= 349.7396 EL= 48.9403 CHILE CAM D-3 3,18,10							the state of the state of the state of		41.9556	MI HOD	KINS C	4M C-2	3,19	<u>.1</u>	/
STA 1 PT 25 AZ = 121.9690 EL = 41.7536 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 25 AZ = 121.9944 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 26 AZ = 122.271 EL = 41.6866 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122.2271 EL = 41.8969 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 28 AZ = 122.3316 EL = 41.809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ = 122.5736 FL = 41.4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ = 122.5736 FL = 41.4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.5736 FL = 41.21 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 31 AZ = 122.5736 FL = 41.3435 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.8074 FL = 41.2057 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.8074 FL = 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ = 122.8074 FL = 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.0379 FL = 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 35 AZ = 123.1260 FL = 40.674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.2700 FL = 40.6294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 2 AZ = 349.5335 FL = 46.982 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.5519 FL = 48.9852 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.5925 FL = 48.9852 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6355 FL = 48.9849 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 FL = 48.9660 FL = 48.9660 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 FL = 48.9660 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 FL = 48.9660 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 FL = 48.9660 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 FL = 48.9660 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6355 FL = 48.9660 CHILE CAM D-3 3,18,10 STA 2 PT						<u> </u>	121.6460			MT HOP	KINS C	AM C-2	3,18	.1	
STA 1 PT 25 AZ = 121.7944 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122.271 FL = 41.6863 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122.2271 FL = 41.6462 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 27 AZ = 122.2271 FL = 41.4609 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 29 AZ = 122.4520 FL = 41.4609 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.4520 FL = 41.4121 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ = 122.6864 FL = 41.248 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 31 AZ = 122.6864 FL = 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.6864 FL = 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ = 122.6864 FL = 41.268 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ = 122.8165 FL = 41.368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.0379 FL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.1260 FL = 40.988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.2760 FL = 40.988 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 349.5335 FL = 49.6294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 349.5335 FL = 49.6294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 349.5313 FL = 49.6294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 349.5813 FL = 49.6294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 3 AZ = 349.5813 FL = 49.6852 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ = 349.5813 FL = 49.6852 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.6660 FL = 48.9749 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6689 FL = 48.9749 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6869 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6869 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6869 FL = 48.6486 CHILE CAM D-3 3,18,10 STA 2										MT HOP	KINS C	.4M C-2	3,18	<u> </u>	
STA 1 PT 26									41.7536	MI HOS	KINS C	AM C-2	<u>3,18</u>	1	
STA 1 PT 27			_						41.6863	_MI_HIP	KINS_C	AM C-2	3,18	1	
STA 1 PT 29 AZ= 122.3316 EL = 41.4809 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ= 122.4520 FL = 41.4121 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 30 AZ= 122.5736 FL = 41.3435 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 31 AZ= 122.6864 FL = 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.6864 FL = 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.6864 FL = 41.2057 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ = 122.69165 FL = 41.1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.0379 FL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.1260 FL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.2700 FL = 40.9294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ = 349.5519 FL = 49.0224 CHILE CAM D-3 3,18,10 STA 2 PT 2 AZ = 349.5519 FL = 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.5519 FL = 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.5813 FL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.591 FL = 48.975 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.591 FL = 48.975 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.6055 FL = 48.9782 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6055 FL = 48.9782 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6055 FL = 48.9743 CHILE CAM D-3 3,18,10 STA 2 PT 1 AZ = 349.6055 FL = 48.9668 CHILE CAM D-3 3,18,10 STA 2 PT 1 AZ = 349.6055 FL = 48.9668 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6055 FL = 48.9668 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.9668 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6055 FL = 48.9668 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.96714 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.96714 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.96714 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.96714 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.96714 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6055 FL = 48.96714 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7075 FL = 48.9732 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7396 FL = 48.9732 CHILE CAM D-3 3,18,10			_						41.6182	MI HUP	KINS C	<u> </u>	3,18,) I — ———	
STA 1 PT 29			_												
STA 1 PT 3C			_							MI HUP	KINS C	A* C+2	3:18:	1	
STA 1 PT 31 AZ=122.6864 FL= 41.2748 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 32 AZ=122.6864 FL= 41.2057 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 33 AZ=122.9165 FL= 41.1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ=123.0379 FL= 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 35 AZ=123.0379 FL= 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ=123.0379 FL= 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ=123.1260 FL= 40.9294 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ=349.5335 FL= 49.0294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ=349.5335 FL= 49.0254 CHILE CAM D-3 3,18,10 STA 2 PT 2 AZ=349.5519 FL= 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ=349.53813 FL= 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ=349.5355 FL= 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ=349.6355 FL= 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ=349.6355 FL= 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ=349.6160 FL= 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ=349.6280 FL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ=349.6355 FL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ=349.6355 FL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ=349.6355 FL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ=349.6359 FL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ=349.6350 FL= 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ=349.6859 FL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ=349.6937 FL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ=349.6937 FL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ=349.7075 FL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ=349.7223 FL= 48.732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ=349.7386 FL= 48.732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ=349.7386 FL= 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ=349.7386 FL= 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ=349.7386 FL= 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ=349.7386 FL= 48.1732 CHILE CAM D-3 3,18,10							· · - · · · · · · · · · · · · · · · · ·	_,		MT HOD	KINS C	<u>ΛΜ C-2</u>	3,181	· <u>1</u>	
STA 1 PT 32 AZ = 122.8074															
STA 1 PT 33 AZ = 122.0165 FL = 41.1368 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 34 AZ = 123.0379 EL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 35 AZ = 123.0379 EL = 41.0674 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 35 AZ = 123.02700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.2700 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ = 349.5335 EL = 49.1294 CHILE CAM D-3 3,18,10 STA 2 PT 2 AZ = 349.5519 FL = 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.525 FL = 48.9155 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ = 349.525 FL = 48.9155 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.5255 EL = 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.5255 EL = 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6160 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ = 349.6260 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6265 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6365 EL = 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6365 EL = 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6365 EL = 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6365 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6589 FL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.66937 EL = 48.436 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.436 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ = 349.6937 EL = 48.436 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.723 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1732 CHILE CAM D-3 3,18,10							Commence of the Commence of th								
STA 1 PT 34						λ Z =	22 0125		41 1369	MT HOD	KINS C	44 C-2	2,10	1	
STA 1 PT 35 AZ = 123.1260 EL = 40.9988 MT HOPKINS CAM C-2 3,18,1 STA 1 PT 36 AZ = 123.2700 EL = 40.9294 MT HOPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ = 349.5335 EL = 49.1274 CHILE CAM D-3 3,18,10 STA 2 PT 2 AZ = 349.5519 EL = 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.525 FL = 48.9852 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ = 349.5813 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.6991 EL = 49.8499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.6355 EL = 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6160 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ = 349.6405 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5789 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5789 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6689 EL = 48.5789 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6859 FL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ = 349.7386 EL = 48.1732 CHILE CAM D-3 3,18,10			-						41 0674	MT DOD	KING C	VM C-5	2 10	1	
STA 1 PT 36 A7 = 123.2700 EL = 40.9294 MT HDPKINS CAM C-2 3,18,1 STA 2 PT 1 AZ = 349.5335 EL = 49.1204 CHILE CAM D-3 3,18,10 STA 2 PT 2 AZ = 349.5519 EL = 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ = 349.5525 FL = 48.9852 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ = 349.53813 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.5991 EL = 49.8499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.5055 EL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6160 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ = 349.6280 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.6699 EL = 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ = 349.7075 EL = 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7223 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7223 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ = 349.7549 EL = 48.1047 CHILE CAM D-3 3,18,10									4(.0088	MT HOP	KINS C	AM C-2	3.18	1	
STA 2 PT 1 AZ= 349.5335 EL= 49.1204 CHILE CAM D-3 3,18,10 STA 2 PT 2 AZ= 349.5519 EL= 49.0524 CHILE CAM D-3 3,18,10 STA 2 PT 3 AZ= 349.5525 FL= 48.9852 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ= 349.53813 EL= 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ= 349.5991 EL= 49.8499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ= 349.5055 EL= 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ= 349.6160 FL= 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ= 349.6160 EL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ= 349.6280 EL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 0 AZ= 349.6405 EL= 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ= 349.6550 FL= 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ= 349.6689 FL= 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ= 349.6689 FL= 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ= 349.6937 EL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ= 349.6937 EL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ= 349.7075 FL= 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ= 349.7223 FL= 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ= 349.7386 EL= 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ= 349.7386 EL= 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ= 349.7540 EL= 48.0372 CHILE CAM D-3 3,18,10															
\$TA 2 PT 2 AZ= 349.5519						Λ <u>7</u> = 3	349.5335								
STA 2 PT 3 AZ = 349.5525 FL = 48.9852 CHILE CAM D-3 3,18,10 STA 2 PT 4 AZ = 349.5813 EL = 48.9175 CHILE CAM D-3 3,18,10 STA 2 PT 5 AZ = 349.5991 EL = 48.9499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ = 349.6355 EL = 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6160 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ = 349.6280 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.6889 FL = 48.436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.6889 FL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ = 349.7075 FL = 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.723 FL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10		ŚTA		ΈŢ											
STA 2 PT 4 AZ = 349.5813 EL = 48.9175 CHILE CAM D-3 3.18.10 STA 2 PT 5 AZ = 349.5991 EL = 48.8499 CHILE CAM D-3 3.18.10 STA 2 PT 6 AZ = 349.6055 EL = 48.7822 CHILE CAM D-3 3.18.10 STA 2 PT 7 AZ = 349.6160 FL = 48.7143 CHILE CAM D-3 3.18.10 STA 2 PT 8 AZ = 349.6280 EL = 48.6468 CHILE CAM D-3 3.18.10 STA 2 PT 9 AZ = 349.6405 EL = 48.5739 CHILE CAM D-3 3.18.10 STA 2 PT 10 AZ = 349.6550 EL = 48.5739 CHILE CAM D-3 3.18.10 STA 2 PT 11 AZ = 349.6689 EL = 48.5114 CHILE CAM D-3 3.18.10 STA 2 PT 11 AZ = 349.689 FL = 48.4436 CHILE CAM D-3 3.18.10 STA 2 PT 12 AZ = 349.689 FL = 48.3762 CHILE CAM D-3 3.18.10 STA 2 PT 13 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3.18.10 STA 2 PT 14 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3.18.10 STA 2 PT 15 AZ = 349.7075 FL = 48.3075 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ = 349.723 FL = 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ = 349.7540 EL = 48.0372 CHILE CAM D-3 3.18.10	-	STA "				$\Delta Z = 3$	349.5525	FL=	48.9852	CHILE	CAM D-	$3 \overline{3,1}$	3,10		
STA 2 PT 5 AZ= 349.5991 EL= 49.8499 CHILE CAM D-3 3,18,10 STA 2 PT 6 AZ= 349.6355 EL= 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ= 349.6160 EL= 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ= 349.6280 EL= 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ= 349.6405 EL= 48.5739 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ= 349.6550 EL= 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ= 349.6689 EL= 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ= 349.6889 EL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ= 349.6937 EL= 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ= 349.6937 EL= 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ= 349.7075 EL= 48.2403 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ= 349.723 EL= 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ= 349.7396 EL= 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ= 349.7396 EL= 48.1047 CHILE CAM D-3 3,18,10		STA		РТ		$\Delta Z = 3$	349.5813	EL=	48.9175	CHILE	CAN D-	3 3.1	8.10		
STA 2 PT 6 AZ = 349.6055 EL = 48.7822 CHILE CAM D-3 3,18,10 STA 2 PT 7 AZ = 349.6160 FL = 48.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ = 349.6280 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5789 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.6859 FL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.7075 EL = 48.2403 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7223 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10				PT	5										
STA 2 PT 7 AZ = 349.6160 FL = 49.7143 CHILE CAM D-3 3,18,10 STA 2 PT 8 AZ = 349.6280 EL = 48.6468 CHILE CAM D-3 3,18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5789 CHILE CAM D-3 3,18,10 STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.6859 FL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.7075 EL = 48.2403 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7223 EL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ = 349.7540 EL = 48.0372 CHILE CAM D-3 3,18,10		STA	2	PΤ		ΛZ= :	349.5355	£L=	48.7822	CHILE	CAM D-				
STA 2 PT 8 AZ = 349.6280 EL = 48.6468 CHILE CAM D-3 3.18,10 STA 2 PT 9 AZ = 349.6405 EL = 48.5789 CHILE CAM D-3 3.18,10 STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3.18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3.18,10 STA 2 PT 12 AZ = 349.6859 FL = 48.3762 CHILE CAM D-3 3.18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3.18,10 STA 2 PT 14 AZ = 349.7075 FL = 49.2403 CHILE CAM D-3 3.18,10 STA 2 PT 15 AZ = 349.7223 FL = 48.1732 CHILE CAM D-3 3.18,10 STA 2 PT 15 AZ = 349.7386 FL = 48.1047 CHILE CAM D-3 3.18,10 STA 2 PT 17 AZ = 349.7540 FL = 48.0372 CHILE CAM D-3 3.18,10		STA	2	РТ"	7	$\Delta Z = 3$	349.6160	FL =							
STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3,18,10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3,18,10 STA 2 PT 12 AZ = 349.6859 FL = 48.3762 CHILE CAM D-3 3,18,10 STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3,18,10 STA 2 PT 14 AZ = 349.7075 FL = 48.2403 CHILE CAM D-3 3,18,10 STA 2 PT 15 AZ = 349.7223 FL = 48.1732 CHILE CAM D-3 3,18,10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3,18,10 STA 2 PT 17 AZ = 349.7540 EL = 48.0372 CHILE CAM D-3 3,18,10		STA	2	PΤ	g i				48.6468	CHILE	CAM D-				
STA 2 PT 10 AZ = 349.6550 EL = 48.5114 CHILE CAM D-3 3.18.10 STA 2 PT 11 AZ = 349.6689 EL = 48.4436 CHILE CAM D-3 3.18.10 STA 2 PT 12 AZ = 349.6859 FL = 48.3762 CHILE CAM D-3 3.18.10 STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3.18.10 STA 2 PT 14 AZ = 349.7075 FL = 49.2403 CHILE CAM D-3 3.18.10 STA 2 PT 15 AZ = 349.7223 FL = 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ = 349.7540 EL = 48.0372 CHILE CAM D-3 3.18.10			2	PΤ	Ģ				45.5789	CHILE	CAM D-	3 3,1			
STA 2 PT 12 AZ = 349.6859 .FL = 48.3762 CHILE CAM D-3 3.18.10 STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3.18.10 STA 2 PT 14 AZ = 349.7075 FL = 48.2403 CHILE CAM D-3 3.18.10 STA 2 PT 15 AZ = 349.7223 FL = 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ = 349.7549 EL = 48.0372 CHILE CAM D-3 3.18.10				PT	10			EL=				3 3,1			
STA 2 PT 13 AZ = 349.6937 EL = 48.3075 CHILE CAM D-3 3.18.10 STA 2 PT 14 AZ = 349.7075 EL = 48.2403 CHILE CAM D-3 3.18.10 STA 2 PT 15 AZ = 349.7223 EL = 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ = 349.7386 EL = 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ = 349.7540 EL = 48.0372 CHILE CAM D-3 3.18.10			2	₽T	11			FL=	48.4436	CHILE	CAM D-	3 3,1	8,10		
STA 2 PT 14 AZ= 349.7075 EL= 49.2403 CHILE CAM D-3 3.19.10 STA 2 PT 15 AZ= 349.7223 EL= 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ= 349.7396 EL= 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ= 349.7540 EL= 48.0372 CHILE CAM D-3 3.18.10			2	PŢ.	12	ΛZ=	349 . 6859 .	FL=	48.3762	CHILF	CAM D-				
STA 2 PT 15 AZ= 349.7223 FL= 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ= 349.7386 FL= 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ= 349.7549 FL= 48.0372 CHILE CAM D-3 3.18.10		STA	2	PT	13			EL=	48.3075	CHILE	CAM D~	3 3,1	8,10		
STA 2 PT 15 AZ= 349.7223 FL= 48.1732 CHILE CAM D-3 3.18.10 STA 2 PT 16 AZ= 349.7386 FL= 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ= 349.7549 FL= 48.0372 CHILE CAM D-3 3.18.10		STA	2	PT	14	AZ = 3	1075	FL=	49.2403	SHILE	CAM D-	3 3,1	9,10		
STA 2 PT 16 AZ= 349.7396 ÊL= 48.1047 CHILE CAM D-3 3.18.10 STA 2 PT 17 AZ= 349.7549 EL= 48.0372 CHILE CAM D-3 3.18.10				PΤ									-		
STA 2 PT 17 AZ= 349.7540 EL= 48.0372 CHILE CAM D-3 3.18.10		_		PT											
STA 2 PT 18 AZ= 349.7651 FL= 47.9686 CHILE CAM D-3 3.18.10		STA	2	ΡŤ	17	4 Z = 3	349.7549		48.0372	CHILE	CAM D-	3 3,1	8,10		
		STA	2	PΤ	13	A Z = 3	349.7651	F L =	47.9686	CHILE	CAM D-	3 3.1	8 <u>+10</u>		

TABLE II. - INPUT DATA FOR ILLUSTRATIVE EXAMPLE - Continued

	_						. 3 6513 6411 E END 6 3 3 10 10
STA	2	PΤ	19	A Z =	347.7797	FL =	47.9317 CHILE CAM D-3 3,19,10
STA	2	PΤ	20	ΛZ=	349.7918	EL=	47.8341 CHILE CAM D-3 3,18,10
STA	2	PΤ	21	۸7-	349.3059	Fi =	47.7669 CHILE CAM D-3 3,18,10
STA	5	PΤ	2.2		349.8234	EΓ≈	47.6998 CHILE CAM D-3 3.18.10
STA	2	PΤ	23	ΑZ≂	349.9379	Eį≃	47,6326 CHILE CAM D-3 3,18,10
STA	2	PΤ	24	۸ <i>7</i> =	349.8514	F L =	47.5647 CHILE CAM D-3 3,18,10
STA	2	PΤ	25		349.8628	EL=	47.4974 CHILE CAM D-3 3,18,10
STA	2	PΤ	26		349.9782	ELج	47.4299 CHILE CAM D-3 3,18,10
STA	2	₽T	27	A Z =	349.8911	Е է =	47.3620 CHILE CAM D-3 3,18,10
STA	2	PΤ	28	ΔZ=	349.9025	FL=	47.2944 CHILE CAM N-3 3,18,13
STA	2	ΡŢ	2 r	Δ7 =	349.9158	FL≇	47.2261 CHILE CAM D-3 3,18,10
STA	2	PΤ	30		349.9286	EL =	47.1589 CHILF CAM D-3 3,19,10
							27 2017 CHILE CAN D 2 2 10 10
STA	2	PT	31	and the second second	349.9418	<u> </u>	47.0913 CHILE CAM D-3 3,18,10
STA	2	ÞŢ	32	47 =	349.9535	[[<u>.</u> =	47.0237 CHILE CAM D-3 3,18,10
STA	2	PΤ	33	$\Delta Z =$	349.9677	EL=	46.9561 CHILE CAM D-3 3,18,10
STA	2	РΤ	34		349,0909	EĹ≠	46.9992 CHILE CAM D-3 3,19,10
STA	2	РΤ	35		349 9954	. <u>-</u> -	46.8210 CHILE CAM D-3 3,19,10
ΣTΑ	2	PΤ	3 o		350.0139	E L =	46.7535 CHILE CAM D-3 3,18,10
STA	2	PΤ	37	4 Z =	35 Jab245	FL=	46.6955 CHILE CAM D-3 3,18,10
STA	2	PΤ	33	ÄŽ=	350 . 1330	F.[=	46.6182 CHILE CAM D-3 3,18,10
STA	2	PΤ	34		350.5445	EL=	46.5506 CHILE CAM D-3 3,19,10
							46.4829 CHILE CAM D=3 3,18,10
STA	2	₽ ₹	40		350.0526	<u>EL</u> =	
STA	ż	PΤ	41		[350 . 0065]	- <u> </u>	46.4146 CHILE CAM N-3 3,18,10
STA	2	PΤ	42	Δ <u>Z</u> ≃	_350 。 0789`	E L =	46.3474 CHILE CAM D-3 3,18,10
STA	2	PΥ	43	A, Z =	350.0903	FL =	46.2798 CHILE CAM D-3 3,19,10
STA	2	PΤ	-, -,		330.1089	E.L =	40.2123 CHILF CAM D-3 3,18,10
STA		PΤ	45	A Z =		EL=	46.1446 CHILE CAM D-3 3,19,10
	2				350.1193		
STA	2	ÞΤ	4 6	4 Z =	350.1340	EL=	46.0768 CHILE CAM D-3 3.18.10
STA	2	ΡŢ	47	ΔZ=	350.1419	FL=	46.0091 CHILE CAM 0-3 3,18,10
STA	2	PΤ	4, 4	Λ7 =	3:3.1506	EL =	45.9418 CHILE CAM D-3 3,18,10
STA	2	PΤ	40	Λ7 =	350.1743	5 <u>L</u> =	45.8742 CHILE CAM D-3 3,18,10
ŠΤΑ	2	ÞŤ	5		350.1794	EL =	45.8C63 CHILE CAM D-3 3,18,10
STA	2	PT					
			51		35).1905	EF≅	The second secon
STA	2	PΤ	52		350.2036	⊬ <u>l</u> =	45.6705 CHILE CAM D-3 3,18,10
STA	2	PT	5.3	A Z =	350.2156	£[≠	45.6025 CHILE CAM D-3 3,18,10
STA	2	₽Ŧ	54	A 2 =	350.2272	F.L =	45.5343 CHILE CAM D-3 3,18,10
STA	2	ρТ	5.5	Δ Ž =		E C =	45.4663 CHILE CAM D-3 3,18,10
STA	2	PT	56		350.2002	F[=	
STA	2	PT	57		357.2637	EL=	45.3302 CHILE CAM D-3 3.18.19
SIA	2	PΨ	5.8	ΛZ =	2761	`` ⊑Ĺ=``	45.2620 CHILE CAM N-3 3,19,10
STA	2	PΤ	59	$\Delta Z =$	350.2370	<u> </u>	45.1934 CHILE CAM D-3 3,18,10
STA	2	PΤ	ći.	4.7 =	350°,2693°	FL=	45.1255 CHILF CAM D-3 3,19,10
STA	2	PΤ	όl		35073093		45.0572 CHILE CAM D-3 3,18,10
	2 .	PŤ					· · · · · · · · · · · · · · · · · · ·
STA			. 5.5		350,3195	FL≓	44.9896 CHILE CAM D-3 3,19,10
STA	2	ρŢ	53	4 Z =	350.3309	FL =	44.9218 CHILE CAM D-3 3.18.10
5 T.A	2	PT	6 +	A [=	350.3456	ΓL=	44.8539 CHILE CAM D-3 3,19,10
STA	2	PΤ	65	A 7 =	350.3578	FL=	
			- "				44.7854 CHILE CAM 0-3 3,18,10
	<u>_Z</u>		_66		350.3699		44.7175 CHILE CAM D-3 3,18,10
SIA	_2	PT	67	A Z =	350 <u>.3859</u>	<u> </u>	44.6494 CHILE CAM D-3 3.18.10
STA	2	PΤ	68	4 Z =	350.3951	FL=	44.5811 CHILE CAM D-3 3,18,10
STA	2	PT	69	AZ=	350.4068	FL=	
STA		PΤ	70		350.4207	EL=	44,4445 CHILE CAM D-3 3,18,10
STA	2	PT					
			71		350.4313	FL=	
STA	2	P.T.	72	47=	350.4443	EL=	44.3071 CHILE CAM D-3 3.18.10
STA	_2	PT	73		350.4586	FL=	44.2390 CHILE CAM D-3 3,13,10
STA	2	PT	74		350.4677	F[=	44.1734 CHILE CAM D-3 3,18,10
STA	2	PΤ	75		350.4797	EL=	44.1016 CHILE CAM D-3 3,19,10
STA	3	PT.			182.3040	EL=	
STA	3	PT	·				50.5829 AC WALLOPS AC-3 3,18,10
			2		192,3085	EL≢	50.6889 AC WALLOPS AC-3 3,18,10
STA	3	PT	3	_ AZ=	182.3122	£.Ł≃	50.7940 AC WALLUPS AC-3 3,18,10
STA	3	PΤ	4	A Z =	192.3192	[:L=	50.9018 AC WALLOPS AC-3 3,18,10

TABLE II.- INPUT FOR ILLUSTRATIVE EXAMPLE - Concluded

STA	3	PΤ	5	ΔZ=	152.3341	EL=	51.0146	ΔC	WALLOPS	AC-3	3,18,10	
STA	3	РΤ	6	AZ=	182.3490	EL=	51.1274	ΑC	WALLOPS	AC-3	3,18,10	
STA	3	РΤ	7	AZ =	182.3511	EL=	51.2319	AC	WALLOPS	AC-3	3,19,10	
STA	3	PΤ	В		182.3554	EL=	51.3366	AC	WALLOPS	AC-3	3,18,10	
STA	3	PT	9	4 Z =	192.3601	EL=	51.4417	AC	WALLOPS	AC-3	3,19,10	
STA	3	PT	10		192.3723	EL=	51.5526		WALLOPS			
STA	3	PT	11	4 Z =	192.3321	F L =	51.6622	AC	WALLOPS	AC-3	3,18,10	
STA	3	PT	12	Δ Z =	182.3891	EL=	51.7683	AC	WALLOPS	AC-3	3,18,10	
STA	3	РΤ	13	ΛZ=	182.3953	FL=	51.8749	ΑC	WALLOPS	AC-3	3,18,10	
STA	3	PT	14	<u>Δ7</u> =	182.4013	FL=	51.9808	AC	WALLUPS	AC-3	3,18,10	
STA	3	PT	15		132.4039	EL=	52.0844	AC	WALLOPS	AC-3	3,18,10	
STA	3	PT	16	AZ=	192.4213	EL=	52.1985	AC	WALLOPS	AC-3	3,18,10	
STA	3	PT	17	47 =	132.4277	EL=	52.3046	۸C	WALLOPS			
STA	3	РΤ	19	ΔZ =	182.4363	EL=	52.4123	AC	WALLOPS	AC-3	3,18,10	
STA	3	PΤ	19	ΔΖ=	182.4439	EL=	52,5196	AC	WALLOPS	AC-3	3,18,10	
STA	3	PŤ	20	4 Z =	182,4525	EL=	52.6272	AC	WALLOPS		3,18,10	
STA	3	PT"	21	AZ=	182.4655	FL=	52.7376		WALLIPS		3,18,10	
STA	3	PΪ	22	A Z =	182.4739	EL=	52.8434	AC	WALLOPS	AC-3	3,18,10	
STA	3	PΫ́	23	A Z =	182.4764	EL=	52.9492		WALLOPS	AC-3	3,18,10	
STA	3	ΡŤ	2 +	A Z =	182.4972	EL=	53.05.80	AC	WALLOPS		3,18,10	
STA	3	PT	25	AZ=	182.4923	LL=	53.1636	۸C			3,18,10	
STA	3	PΤ	26	AZ=	182,5001	EL=	53.2708		WALLOPS	AC-3	3,18,10	
STA	3	РΤ	27	AŽ=	182.5079	EL=			WALLOPS			
STA	3	ΡŤ	28	A Z =	182.5226	EL =	53.4904	ΑC	WALLOPS	<u>AC-3</u>	3,18,10	
	• • • •											
L= 1	•	N =	36	N <u>.⊃</u> =	25							
		•										
L = 2		N =	75	M(Ü ≃	25							
									<u> </u>			
i= 3		N =	28	= C <i>N</i>	25				·			
ESTIMATED TRIAL POINT LATE 6.150 LON=-76.770 ALT= 31500												

TABLE III. - SOLUTION FOR ILLUSTRATIVE EXAMPLE

TIME 3 H		10.0 SEC			
ALTITUUE	COTITAL	LONGITUDE	RMS RES	PTS ON AZ-EL CURVE	
				36 75 29	
30200	9.121	-76.763	•0024	35 75 28	
30300	7,973	-76.763	.0024	34 72 29	
30465	7.856	-76.763	•0025	32 69 28	
30500	706°0	-76.762	• 0027	31 67 28	
30600	7.556	-76.762	.0029	31 67 28 30 64 28	
30700	7.415	-76.162	.0033	29 61 28	
35800	7.219	-76.762	•))39	27 59 28	
30 9 00	7.137	-76,761	. 0040	26 55 27 25 54 25 24 51 24	
3100 J	7.333	-76.760	. 2044	25 54 <u>2</u> 5	
31100	€ 369	-76.759	•0046	24 51 24	
31 2 00	r.729	-76.758	• 00 44	22 48 23	
31300	(•601	-76.756	•0047	21 46 22	
31400	6.467	-76.755	.0051	20 44 20	
31500	-•75a	-76.754	-0054	19 41 19	
31600	4.6132	-76.752	.0057	17 38 18	
J1700	c , u 39	-76.751	•0058	16 35 1 6	
31360	- 3 90	-76.750 °	•CC61	15 33 15	
3 19 00	5.751	-76.749	• 0062	13 30 13	
32) 00	# . €03	-76 . 748	.0 058	12 27 12	
2100ذ	5 4 + 9	-76,747	• 0055	10 24 11	
32253	:.31C	-76.74c	•0053	9 22 9	
32300	. 1 1	-75.745	.0048	8 19 8	
32400	5.01i	-76.745	.0342	6 16 6	
32500	4.0067	-76.744	• 0042	5 14 5	
3260 🖟	4.725	-76.742	• 0U44	4 11 4	
3270 J	4.584	-76.741	•0048	2 5 2	
230℃	4,47	-76.739	。3052	1 6 1	

Figure 1.- Trial solution point P in space as observed from three sites illustrating residuals D(1), D(2), and D(3) due to errors in measuring lines of sight.

Figure 2.- Illustration of three surfaces defined by az-el data from three observation sites. For the trial point P, the residual for site 1 is D(l).

Figure 3.- Illustration of minimization of root-mean-square residuals with varying PLON and PLAT. EM is the minimum root-mean-square residual for variable PLON at a fixed PLAT.

Figure 4.- Illustration of the relations between topocentric and geographic coordinates.

Figure 5.- Illustration of an approximate angular two-dimensional coordinate system with reference direction S-N, which is used in least-squares fit of az-el data and computation of residuals.

Figure 6.- Illustration of the Earth spheroid and the relations between geographic and geocentric coordinates.